
Degrading Lists
Dylan McDermott

Reykjavík University

Reykjavík, Iceland

dylanm@ru.is

Maciej Piróg

Wrocław University

Wrocław, Poland

mpirog@cs.uni.wroc.pl

Tarmo Uustalu

Reykjavík University

Reykjavík, Iceland

Tallinn University of Technology

Tallinn, Estonia

tarmo@ru.is

ABSTRACT
Wediscuss the relationship betweenmonads and their known gener-

alisation, graded monads, which are especially useful for modelling

computational effects equipped with a form of sequential compo-

sition. Specifically, we ask if a graded monad can be extended to

a monad, and when such a degrading is in some sense canonical.

Our particular examples are the graded monads of lists and non-

empty lists indexed by their lengths, which gives us a pretext to

study the space of all (non-graded) monad structures on the list and

non-empty list endofunctors. We show that, in both cases, there

exist infinitely many monad structures. However, while there are at

least two ways to complete the graded monad structure on length-

indexed lists to a monad structure on the list endofunctor, such a

completion for non-empty lists is unique.

CCS CONCEPTS
• Theory of computation→ Functional constructs; Program
semantics;

KEYWORDS
monads, algebraic theories, graded monads, degrading, lists

ACM Reference Format:
Dylan McDermott, Maciej Piróg, and Tarmo Uustalu. 2020. Degrading Lists.

In 22nd International Symposium on Principles and Practice of Declarative
Programming (PPDP ’20), September 8–10, 2020, Bologna, Italy. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3414080.3414084

1 INTRODUCTION
The term ‘list monad’ (on the category of sets and functions) usually

describes the monad that arises from free monoids, that is, the one

used in programming to express nondeterministic computations

alongside the finite multiset and powerset monads. However, as we

prove in this paper, there are actually infinitely many ways to turn

the list endofunctor into a monad. Similarly, the usual ‘non-empty

list monad’ is just one of infinitely many monads one can define

on the endofunctor of non-empty lists. Thus, in broader contexts,

one could speak in the plural about list monads and non-empty

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP ’20, September 8–10, 2020, Bologna, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-8821-4/20/09. . . $15.00

https://doi.org/10.1145/3414080.3414084

list monads. The goal of this paper is to study these structures

from a more combinatorial angle. The results we obtain are quite

surprising: the abundance and diversity of monads in both cases

have defied our original intuitions.

Our more practical motivation is to use these results to investi-

gate properties of a known generalisation of monads, graded mon-
ads. Introduced by Smirnov [21], they are useful for quantitative

modelling of effects, e.g., with graded lists we can precisely fix or

upper-bound the number of outcomes from a nondeterministic com-

putation. Some examples include the semantics of type-and-effect

systems for program analysis and transformation [9, 17] (where ‘ef-

fect’ refers to what is called ‘grade’ here), process semantics [7, 16],

and tensorial logic [15]. Broadly speaking, a graded monad T is a

family of endofunctorsTд , where the indicesд (grades) are elements

of a preordered monoid G, and the unit (return) and multiplica-

tion (join) are appropriately coherent with the structure of G; see

Section 2 for a formal definition.

While every monad is trivially graded by a one-element monoid,

in this paper we discuss the relationship in the opposite direction:

how to turn a graded monad into a (non-graded) monad, and, if

there are multiple such degradings, whether there exists one that
is—in an appropriate sense—canonical. This question was asked by

Fritz and Perrone [8], who hinted at algebraic Kan extensions [12, 23?
] as the correct notion of degrading, and used the graded monad of

length-indexed lists as the motivating example, but did not claim

or prove anything about it.

We draw inspiration from dependently-typed programming,

where it is a common pattern to turn an indexed type into a regu-

lar one (for example, “vectors”, i.e., length-indexed lists, into lists)

simply by hiding the index under an existential quantifier. The

category-theoretic analogue of this construction is the appropriate

colimit. As our main running example, we consider the graded

monad List= of length-indexed lists, with G the monoid of natural

numbers with multiplication. We define the multiplication of a list

of lists in the familiar fashion, as the concatenation of all inner

lists. The colimit of n 7→ List=n is a functor that takes a set X to

the disjoint union of List=nX for all n ∈ N, that is, the list func-
tor List. Similarly, for the graded monad List+= of length-indexed

non-empty lists, the colimit is the non-empty list functor List+.

The colimit construction works well on functors, but we also

need to account for monad structure. For the colimit T̂ of д 7→ Tд to

be an algebraic Kan extension, the functor T̂ has to carry a monad

structure compatible with the graded monad structure of T , and
the unique natural transformation from T̂ into any other degrading

should preserve the monad structure. However, it turns out that

neither List nor List+ enjoy these properties. We therefore look for

something weaker.

https://doi.org/10.1145/3414080.3414084
https://doi.org/10.1145/3414080.3414084

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

As our first candidate, we propose a notion of shallow degrading,
which we use for any monad structure on the colimit that is com-

patible with the original graded monad structure. Then, we ask if

some shallow degrading is unique. Uniqueness makes it canonical

in the banal sense of there being no other option. This retains the

existential quantifier intuition, the difference is that the unique

maps are not required to preserve the monad structure. For lists

and non-empty lists, our combinatorial results come in handy here.

We show that there are at least two monad structures on List that

agree with the graded monad List=, and hence there is no unique

shallow degrading of possibly-empty lists. The situation is different

for non-empty lists. As the main technical result of this paper, we

show that exactly one monad structure on List+ (the usual one) is

compatible with the graded monad List+=, and so the usual non-

empty list monad is a unique shallow degrading. The proof is quite

involved, and requires steps like a thorough computer search for

possible ‘prefixes’ of the monad multiplication for lists of length 6.

While we of course cannot know if a simpler proof of this fact is

possible, we draw a conclusion from this situation that we should

not hope for a simple generic condition telling us when a given

graded monad can be uniquely degraded using this construction.

A second way of weakening the notion of algebraic Kan exten-

sion is to drop the requirement that we use the colimit of T . This
leads to a notion of initial degrading: a degrading such that there is

a unique structure-preserving map into any other degrading. We

show that there is an initial degrading of the graded non-empty list

monad. However, this degrading is not a non-empty list monad.

Contributions. To sum up, we make the following contributions:

• In Section 2, we introduce the notion of degrading of a graded
monad. We discuss the colimit construction and the problem

of furnishing it with a (unique) monad structure.

• In Section 3, we prove that there are infinitely many monad

structures on the list endofunctor. Among them, there are

two compatible with the multiplication of the graded list

monad. From that, we conclude that List= has no unique

shallow degrading.

• In Section 4, we prove that, in the case of List+, there are also

infinitely monad structures, and that there are some that are

not simply projections of monads on List.

• In Section 5, we prove that, despite the abundance of monad

structures on List+, only one is compatible with the usual

one for balanced lists, yielding a unique shallow degrading.

• Finally, in Section 6, we introduce the notion of initial degrad-
ing.We construct such a degrading for the graded non-empty

list monad and show that it is different from the shallow one.

While we use some category-theoretic concepts, we focus on set-

theoretic lists. We have made efforts to make this paper accessible

to a reader with only a basic understanding of category theory.

2 DEGRADING GRADED MONADS
In this section, we give the definition of monads and graded monads,

and discuss how they relate to each other. To fix the notation, we

recall some basic definitions:

Definition 2.1. A functor T : Set → Set consists of a set TX for

each set X and a function T f : TX → TY for each f : X → Y such

that T idX = idTX and T (f ′ ◦ f) = T f ′ ◦ T f . We write T ′ · T for

composition of functors, and Id for the identity functor.

A natural transformation α : T ⇒ T ′
between two functors

is a set-indexed family of functions αX : TX → T ′X such that

αY ◦T f = T ′ f ◦ αX for each f : X → Y .

Instead of List f , we will often write map f , like a Haskell pro-
grammer would write. We will also often skip the index of a natural

transformation if it is known from the context or is not important.

Definition 2.2. A monad (T ,η, µ) consists of a functor T : Set →
Set and two natural transformations, the unit η : Id ⇒ T and the

multiplication µ : T ·T ⇒ T , such that the monad laws hold:

µX ◦ ηTX = idTX (left unit)

µX ◦TηX = idTX (right unit)

µX ◦T µX = µX ◦ µTX (associativity)

Aswas observed byManes [?], an equivalent definition ofmonad

can be obtained by replacing the multiplication µ with a Kleisli
extension operation (−)∗. If (T ,η, µ) is amonad, then for f : X → TY
we define f ∗ : TX → TY to be µY ◦T f . (In Haskell, f ∗ t is written
t ≫= f .)

Example 2.3. The usual list monad is (List, [−], concat), where

ListX is the set of all (finite, possibly-empty) lists over X , the unit

[−] sends x ∈ X to the singleton list [x], and the multiplication

concat sends a list of lists xss ∈ List(ListX) to its concatenation

concat xss ∈ ListX . Restricting to non-empty lists gives us the

usual non-empty list monad (List+, [−], concat).

Graded monads are similar to monads. The primary difference

is that the functor T is replaced with a graded functor.

Definition 2.4. If (G, ≤) is a preordered set, then a G-graded
functor T consists of a functor Tд : Set → Set for each д ∈ G

and a natural transformation Tд≤д′ : Tд ⇒ Tд′ for each д,д′ ∈ G

satisfyingд ≤ д′ such thatTд≤д = idTд andTд≤д′′ = Tд′≤д′′ ◦Tд≤д′

whenever д ≤ д′ ≤ д′′.

In addition to the preorder ≤, we need the set G of grades to

come with a unit and a multiplication, corresponding to η and µ.

Definition 2.5. A preordered monoid (G, ≤, 1, ·) consists of a

monoid (G, 1, ·) and a preorder ≤ on G, such that · is monotone (if

д1 ≤ д′
1
and д2 ≤ д′

2
then д1 · д2 ≤ д′

1
· д′

2
).

The definition of graded monad is as follows. We restrict our-

selves to considering a few concrete examples of graded monads,

so for our purposes the data of the graded monad (the first half of

the definition) is the most important part.

Definition 2.6. If (G, ≤, 1, ·) is a preordered monoid, then a G-
graded monad (T ,η, µ) consists of a G-graded functor T and a nat-

ural transformation η : Id ⇒ T1, and a natural transformation

µд,д′ : Tд ·Tд′ ⇒ Tд ·д′ for each д,д
′ ∈ G such that

• µ is natural in д,д′:

Tд1 ·д′≤д2 ·д′,X ◦ µд1,д′,X = µд2,д′,X ◦Tд1≤д2,Tд′X

Tд ·д′
1
≤д ·д′

2
,X ◦ µд,д′

1
,X = µд,д′

2
,X ◦TдTд′

1
≤д′

2
,X

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

• The monad laws hold:

µ1,д,X ◦ ηTдX = idTдX (left unit)

µд,1,X ◦TдηX = idTдX (right unit)

µд,д′ ·д′′,X ◦Tд µд′,д′′,X = µд ·д′,д′′,X ◦ µд,д′,Tд′′X (associativity)

Example 2.7. Let 1 be the trivial preordered monoid with one

element. Functors are exactly 1-graded functors, and monads are

exactly 1-graded monads.

Example 2.8. The set of natural numbers forms a preordered

monoid (N, ≤, 1, ·) with the usual ordering and multiplication. We

grade the usual (possibly-empty) list monad by this preordered

monoid, with the grades n ∈ N representing upper bounds on

lengths of lists. For n ∈ N, define

List≤nX = {xs ∈ ListX | |xs| ≤ n}

where |xs| is the length of xs. The natural transformationsTm≤n are

the inclusions List≤mX ⊆ List≤nX . The unit ηX : X → List≤1X
is the singleton operation [−], and the multiplication µn,m,X :

List≤n (List≤mX) → List≤n ·mX is concat.

We also consider the list monad graded by the exact lengths

of the lists (instead of upper bounds). In this case, the grades are

elements of the preordered monoid (N,=, 1, ·) (the same as before,

but with the discrete order), and the functors are now

List=nX = {xs ∈ ListX | |xs| = n}

Both of these examples also have non-empty variants, with nat-

ural numbers replaced by positive integers.

Now we come to the notion of a degrading of a graded monad

T . These are essentially monads T̂ with natural transformations

λд : Tд ⇒ T̂ compatible with the structure of T .

Definition 2.9. A degrading of a G-graded monad (T ,η, µ) con-
sists of a monad (T̂ , η̂, µ̂) and a natural transformation λд : Tд ⇒ T̂
for each д ∈ G such that

λд′,X ◦Tд≤д′,X = λд,X η̂X = λ1,X ◦ ηX

µ̂X ◦ λд,T̂ X ◦Tдλд′,X = λд ·д′,X ◦ µд,д′,X

The definition of shallow degrading requires the pair (T̂ , λ) to
be the colimit of the underlying graded functor T .

Definition 2.10. Suppose that T is a G-graded functor. A pair

(T̂ , λ) of a functor T̂ : Set → Set and a G-indexed family of natural

transformations λд : Tд ⇒ T̂ such that λд′ ◦Tд≤д′ = λд , is called

the colimit of T if, for any other such pair (S, λS), there is a unique
natural transformation h : T̂ ⇒ S such that λSд = h ◦ λд .

When it exists, the colimit of T is unique (up to isomorphism).

Moreover, in our setting (in Set), the colimit always exists: it can be

constructed by defining T̂X = (
∑
д∈G TдX)/≡, where ≡ is a suitable

equivalence relation. We do not give this construction in general,

because our examples have simpler explicit descriptions. For both

of our two graded monads of possibly-empty lists, the colimit is List

together with the inclusions List≤nX ⊆ ListX or List=nX ⊆ ListX .

For non-empty lists, the colimit is List+ with the corresponding

inclusions.

Definition 2.11. Suppose that (T ,η, µ) is a G-graded monad, and

let (T̂ , λ) be the colimit ofT . This colimit forms a shallow degrading
of (T ,η, µ) if there are natural transformations η̂ and µ̂ such that

(T̂ , η̂, µ̂) is a monad and the equations in the definition of degrading

are satisfied.

We are particularly interested in the case when, for a given

graded monad, such a shallow degrading is unique, but note that in
general the colimit might form a degrading in more than one way,

or it might fail to form a degrading at all.

If a shallow degrading (T̂ , η̂, µ̂, λ) has the additional property

that, for any other degrading (S,ηS , µS , λS), the unique natural

transformation h : T̂ ⇒ S from the definition of colimit preserves

the monad structure in the sense that

ηSX = hX ◦ η̂X µSX ◦ hSX ◦ T̂hX = hX ◦ µ̂X

(inwhich case it is necessarily a unique shallow degrading), then it is

an algebraic Kan extension in the sense alluded to in the introduction.
This is equivalent to having a shallow degrading that is also initial
according to Definition 6.1 below in Section 6.

3 MONADS ON List

3.1 Monads to degrade List≤ and List=

We first consider degrading the two graded monads List≤ and List=

of (possibly-empty) lists. In both cases, the unit is singleton, the

multiplication is concatenation, and the colimit of the underlying

functor is List. We therefore ask whether the ordinary list monad

(List, [−], concat) gives the unique shallow degrading. For List≤ ,

this is indeed the case:

Proposition 3.1. The unique shallow degrading of (List≤, [−],
concat) is the ordinary list monad (List, [−], concat) together with
the inclusions List≤n ⊆ List.

Proof. It is easy to see that this data form a shallow degrading.

The interesting part is uniqueness of the unit and multiplication.

Suppose that η̂ and µ̂ make the colimit into a degrading. Then

η̂ must be singleton because η̂ x = λ1[x] = [x], where the first

equality is from the definition of degrading. For the multiplication,

consider an arbitrary list of lists

xss = [xs1, . . . , xsn] ∈ List(ListX)

and definem = maxi |xsi |. Then xss ∈ List≤n (List≤mX), and we

have

µ̂ xss = µ̂(λn (List≤n λm xss)) = λn ·m (concat xss) = concat xss □

This proof relies on the fact that if xss ∈ List(ListX) then xss ∈

List≤n (List≤mX) for somem,n, which implies that any multiplica-

tion in the degrading can be written in terms of a multiplication in

the graded monad.

Consider now the graded monad List=. If a monad (List,η, µ)
forms a degrading with the inclusions List=nX ⊆ ListX , then the

unit is uniquely determined: we must have η x = [x]. Regarding the

multiplication, we can apply the same trick as above for some lists

of lists xss ∈ List(ListX), but not all. Say that xss is balanced if all

of the inner lists have the same length, i.e., xss ∈ List=n (List=mX)

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

for some n,m. Then the multiplication is uniquely determined on

balanced lists:

µ xss = concat xss if xss is balanced

There is a unique shallow degrading of List= if and only if the

multiplication is uniquely determined for all lists of lists; this is to

say if and only if the monad (List, [−], concat), obviously satisfying

the equation above, is the only such monad structure List.

However we can define

concat
′
xss =

{
[] if exists null xss

concat xss otherwise

Now (List, [−], concat′) is a monad too. This is because the functor

List is isomorphic to Maybe · List+ and concat
′
is the multiplica-

tion of the monad structure on Maybe · List+ from the distribu-

tive law of the ordinary non-empty list monad over the maybe

monad. As concat
′
xss = concat xss on balanced lists, the monad

(List, [−], concat′) is a degrading of List=. Hence we can conclude:

Proposition 3.2. The graded monad (List=, [−], concat) does not
have a unique shallow degrading.

We have seen two multiplications on List that agree with that of

List=. But perhaps there are more? To answer this, we take a look

at other possible monad structures on List with [−] as the unit but

out of curiosity also possibly with a different unit.

3.2 Monads with a nullary-binary presentation
Since List is a finitary functor, all monads with List as the under-

lying functor are finitary. Finitary monads can be described with

(algebraic) theories, see, e.g., [? ?].
A presentation is a (not necessarily finite) collection Σ of opera-

tion symbols o with finite arities n ∈ N and a (not necessarily finite)

collection E of equations on open terms made of these operation

symbols. An algebra of a presentation is a set with operations in-

terpreting the operation symbols so that the equations hold. An

(algebraic) theory is an equivalence class of presentations: two pre-

sentations are identified if they have “the same” algebras, i.e., there

is an isomorphism between the respective categories of algebras

that preserves the underlying sets. Alternatively, two presentations

are identified if they have isomorphic clones, where a clone of a
presentation has as operation symbols all open terms of the presen-

tation and as equations all derivable equations between them. Yet

alternatively, two presentations are identified if their free algebras
define isomorphic monads.

The free algebra of a presentation (Σ,E) on a set of X is the set

TΣ,EX = (TΣX)/E of all terms made of operation symbols from Σ
and variables drawn from X , quotiented modulo the least congru-

ence given by the equations of E. A n-ary operation symbol o is

interpreted as the function sending any given terms (t1, . . . , tn) to
the term o(t1, . . . , tn). The corresponding monad (T ,η, µ) has TΣ,E
as the underlying functor T , the inclusion X ⊆ TX of variables

among terms as ηX and flattening of terms over terms over X into

terms over X as the multiplication µX .
For example, the presentation (Σ,E) given by one nullary opera-

tion ε , one binary operation · and three equations

ε · x = x x · ε = x x · (y · z) = (x · y) · z

is a presentation of the theory of monoids. There are other presen-

tations, e.g., we could add another operation ·′ and an equation

x ·′ y = y · x , but that buys us nothing. The corresponding monad

has as TX the carrier of the free monoid on X , i.e., the set of terms

made of ε , · and variables drawn from X , quotiented by the above

equations. This set is isomorphic to ListX , with [] interpreting ε
and ++ interpreting ·. A variable x is interpreted as η x = [x].

Given a monad (T ,η, µ), the clone of the corresponding theory
can be worked out as follows. Its operations of arity n are given by

all natural transformations oX : (TX)n → TX such that

µX (oTX (t1, . . . tn)) = oX (µX t1, . . . , µX tn)

The equations are given by all valid equalities between these func-

tions. A finite presentation can only afford to use a finite subset of

these functions as basic operations and the rest must be definable

from those as terms. A useful fact is that natural transformations

oX : (TX)n → TX agreeing with µ in the above way are in a

bijection with natural transformations fX : Xn → TX (with no

conditions on them) via

oX (t1, . . . , tn) = µX (fTX (t1, . . . , tn)

and

fX (x1, . . . , xn) = oX (ηX x1, . . . ,ηX xn)

This last fact helps us in the context of list monads. The only

natural transformations Xn → ListX are functions f of the form

f (x1, . . . , xn) = [y1, . . . , ym] where {y1, . . . , ym } ⊆ {x1, . . . , xn }.

But they are all obtained from functions

listn (x1, . . . , xn) = [x1, . . . , xn]

using projections and substitution, so if we are looking for a pre-

sentation for a given list monad with a particular multiplication µ,

we only need to consider the functions list
♯
n : (ListX)n → ListX ,

list
♯
n (xs1, . . . , xsn) = µ (listn (xs1, . . . , xsn)) = µ [xs1, . . . , xsn]

as candidate operations. In fact, in the monoid theory example, ε
and · arise in this way for n = 0 and n = 2: we have

ε = list
♯
0
= concat [] = []

xs · ys = list
♯
2
(xs, ys) = concat [xs, ys] = xs ++ ys

Terms t ∈ TΣX identified up to the equivalence given by E are

particularly nice to work with if, in every equivalence class, there

is a unique representative in a syntactically recognizable format, a

term in normal form.

For the theory of monoids, such a normal form format exists.

Terms in normal form (or, in short, normal forms) are defined as

terms of one of the two forms ε or x1 · (. . . (xn−1 · xn) . . .) for n ≥ 1.

Every term is equivalent to precisely one term in this form. Such

terms denote lists list0 = [] and

list2 (η x1, . . . (list2 (η xn−1,η xn) . . .)

= [x1] ++ (. . . ([xn−1] ++ [xn]) . . .)

= [x1, . . . , xn−1, xn]

which precisely enumerate all list forms. Note that this correspon-

dence depends on η and µ (the latter defining ε = list
♯
0
and · = list

♯
2

via list0 and list2) and works thanks to the specific η = [−] and

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

Equations Multiplication (µ xss = ...)

ε · x = x
x · ε = x
(x · y) · z = x · (y · z)

concat xss

ε · x = ε
x · ε = ε
(x · y) · z = x · (y · z)

concat
′
xss =

{
[]

concat xss

if exists null xss

otherwise

ε · x = ε
x · ε = ε
(x · y) · z = x · (y · (x · z))

[]

concat (map palindromise (init xss)) ++ last xss

if null xss or exists null xss

otherwise

ε · x = ε
x · ε = ε
(x · y) · z = ε

[]

[]

map head (init xss) ++ last xss

if null xss or exists null xss

else if exists (not ◦ sglt) (init xss)

otherwise

ε · x = x
x · ε = ε
(x · y) · z = y · z

[]

[]

concat (map safeLast (init xss)) ++ last xss

if null xss

else if null (last xss)

otherwise

ε · x = ε
x · ε = xn+2

(x · y) · z = x · y

[]

replicateLast (n + 1)
(map head (takeWhile sglt (init xss)))

map head (takeWhile sglt (init xss))

++ head (dropWhile sglt (init xss) ++ [last xss])

if null xss

else if null (head (dropWhile sglt (init xss)

++[last xss]))

otherwise

ε · x = ε
x · ε = xn+2

(x · y) · z = xm+2

[]

replicateLast (n + 1)
(map head (takeWhile sglt (init xss)))

map head (takeWhile sglt (init xss))

++ replicate (m + 2)
(head (head (dropWhile sglt (init xss))))

map head (init xss) ++ last xss

if null xss

else if null (head (dropWhile sglt (init xss)

++[last xss]))

else if exists (not ◦ sglt) (init xss)

or null (last xss)

otherwise

ε · x = ε
x · ε = xn+2

(x · y) · z = ε

[]

replicateLast (n + 1)
(map head (takeWhile sglt (init xss)))

map head (init xss) ++ last xss

if null xss

else if exists (not ◦ sglt) (init xss)

or null (last xss)

otherwise

sglt xs =

{
False if null xs

null (tail xs) otherwise

safeLast xs =

{
[] if null xs

[last xs] otherwise

replicateLastn xs =

{
[] if null xs

xs ++ replicaten (last xs) otherwise

palindromise xs = xs ++ reverse (initxs)

Figure 1: Examples of monads on List with unit [−] from theories presentable with ε and ·

µ = concat, which are the unit andmultiplication of the free monoid

monad.

Now, it turns out that not only the theory for the monad with

multiplication concat can be presented with two operations ε =

list
♯
0
and ε = list

♯
2
with lists as normal forms, but the theory for the

monad with multiplication concat
′
can also be presented similarly.

However, the equations governing ε and · differ. In the case of

concat, they were the equations of a monoid. For concat
′
, they are

ε · x = ε x · ε = ε (x · y) · z = x · (y · z)

which are the equations of a semigroup-with-zero. The normal

forms are lists, so the set ListX is the carrier of not only the free

monoid on X but also of the free semigroup-with-zero on X .

Can there be other monad structures on List whose theory is

presentable with ε and · and has these normal forms?

To answer this question, we notice that a term in this signature

is not in normal form if and only if it contains a subterm of one of

the shapes ε · t , t · ε and (t · t ′) · t ′′. So in our presentation we need

three equations of the form

ε · x = rhsL x · ε = rhsR (x · y) · z = rhsA

A sufficient condition for any term in a theory presentation like

this to have a unique normal form is that the equation system, read

as a term rewrite system, is weakly normalizing and confluent. If,

instead of just weak normalization, we can show strong normal-

ization, then confluence can be concluded from local confluence,

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

which is established by checking all possible overlaps of redexes

(critical pairs). Establishing strong normalization is harder and gen-

erally needs to be done on an ad hoc basis by showing that some

kind of rank on terms decreases at any rewrite step. Some simple

examples of such ranks are the size of the term or the number of

redexes in the term, but often one needs far more sophisticated

ranks.

Trying different combinations of right-hand sides (w.l.o.g. only

right-hand sides that are in normal form) for the above three equa-

tions for strong normalization and local confluence, one can thus

try to produce more theories with presentations with our normal

form format and the unique normal forms property. Each of them

yields a monad structure on List.

We performed this exercise on a number of choices, namely we

checked all combinations of right-hand sides from the options

rhsL ∈ {ε,x}
rhsR ∈ {ε,x ,xn+2}
rhsA ∈ {ε,x ,y,xm+2,y · y,x · y,y · x ,x · z,y · z,x · (y · z),

x · (x · z),x · (y · (x · z)) and a few more}

The result is in Figure 1. The table lists those combinations of

(rhsL, rhsR, rhsA) that are locally confluent as term rewrite sys-

tems; those not shown have a critical pair that leads to at least

two different normal forms. All combinations shown are strongly

normalizing.

We found the candidate good combinations by quickchecking [6]

the following parameterised candidate multiplication

µrhsL,rhsR,rhsA.

µrhsL,rhsR,rhsA xss = µ xss where
ε = µ []
xs · ys = µ [xs, ys]
xs

1 = xs

xs
n+1 = xs · xsn

µ [] = []

µ [xs] = xs

µ ([] :: xss) = let x = µ xss in rhsL
µ ([x] :: yss) = case µ yss of{

[] 7→ let x = η x in rhsR
ys 7→ x :: ys

µ ((x :: ys) :: zss) = let x = η x,y = ys, z = µ zss in rhsA

For bad values of the parameter (rhsL, rhsR, rhsA), the monad

laws fail (or the candidate multiplication does not always termi-

nate).

We also learned the non-recursive definitions of µ for the good

cases of Figure 1 by testing µrhsL,rhsR,rhsA on different arguments.

We illustrate the method on the theory (x , ε,y · z). It is strongly
terminating since every reduction step decreases the size of the

term. Here are the checks of 2 critical pairs of the total 8:

(ε · y) · ε → y · ε → ε (ε · y) · ε → ε

((x · y) · z) ·w → (y · z) ·w → z ·w ((x · y) · z) ·w → z ·w

Beyond the two good theories that we already knew, we discov-

ered six more with this method. The theories (ε,xn+2, rhsA) yield
multiplications that both duplicate and delete elements. The theory

(ε, ε,x · (y · (x · z))) has the multiplication both duplicating and

permuting elements.

The theories with rhsL = xn+2 are parameterised by a natural

number n. This means that we have infinitely many monad struc-

tures on List. And not just that, infinitelymany of suchmonads have

their theory presentable with ε and · and have this presentation

admitting a particular normal form format.

Proposition 3.3. All theories with operations ε and · from Figure 1
define monads (List, [−], µ) via the same particular normal form
format. These theories are infinitely many.

We do not know whether our table is complete. Further options

for rhsA might give further good combinations. In particular, we

do not know if there is a multiplication that permutes but does not

duplicate or a multiplication that duplicates but does not delete.

In all of the above, we only considered theories presented with

two operations ε , ·, with particular normal forms and with the

monad unit [−]. Not every monad, not even with unit [−] has to be

presentable in this way.

3.3 A monad with no finite presentation
Here is a different monad structure on List, still with [−] as the unit.

As the multiplication we choose a new variation of concat:

concat
′′
xss =

{
concat xss if sglt xss or all sglt xss

[] otherwise

We already know that, for any monad (List,η, µ), every presenta-
tion of its theory can be reduced to one using a subset of the oper-

ations {list
♯
n | n ∈ N} where list

♯
n (xs0, . . . , xsn) = µ [xs0, . . . , xsn].

This modified presentation will be finite if the given presentation is.

Therefore, for the theory to admit a finite presentation, there has

to be some k ∈ N such that the operations list
♯
n for n < k suffice.

Now, for the monad (List, [−], concat′′), however we choose k ,

terms over the signature {list
♯
n | n ≤ k} can only represent lists of

length at most k . This is because list
♯
n (xs0, . . . , xsn) is non-empty

only if xs0, . . . , xsn are all singletons in which case we get a list of

length n. So we need all operations {list
♯
n | n ∈ N} to present this

monad.

So not every monad on List has its theory finitely presentable.

Proposition 3.4. (List, [−], concat′′) is a monad with no finite
presentation.

3.4 Monads with a different unit
We have seen a number of choices for multiplication for List, but

the unit was always [−]. Since ηX : X → ListX has to be natural,

we must have η x = replicate e x for some e ∈ N.
It is clear that we cannot choose e = 0 since then µ ◦ η = id

cannot hold. But we do not know if it is possible to choose e ≥ 2.

3.5 Monads isomorphic via reverse

The functor List is isomorphic to itself via the natural transforma-

tion reverse. This isomorphism lifts to monad structures on List.

Specifically, if (List,η, µ) is a monad, then so is also (List,η, µR)
where µR is defined by

µR = reverse ◦ µ ◦ List reverse ◦ reverse

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

The proof of this is easy after noting that η = reverse ◦ η. Fur-
thermore, the monad with µ is isomorphic to the monad with µR

since the natural transformation reverse is a monad morphism (it

commutes with the unit and the two multiplications).

Proposition 3.5. For any monad (List,η, µ), the data (List,η, µR)
form a monad that is isomorphic (as a monad) to the given one via the
natural isomorphism reverseX : ListX → ListX , which is a monad
morphism.

All monads we have presented above are from distinct isomor-

phism classes. No two of them are isomorphic, neither via reverse

nor via any other monad morphism.

4 MONADS ON List+

4.1 Monads to degrade List+≤ and List+=

We now turn to the non-empty variants of the graded monads List≤

and List=.

For List≤ , restricting to non-empty lists makes little difference:

we can show that the colimit of the graded functor List+≤ is List+

and that (List+, [−], concat) is the unique shallow degrading using

the same proof as in Proposition 3.1.

Proposition 4.1. The unique shallow degrading of
(List+≤, [−], concat) is the ordinary nonempty list monad
(List+, [−], concat) with the inclusions List+≤n ⊆ List+.

For List=, however, the monad we use to show that there are

multiple shallow degradings in the possibly-empty case differs

from the ordinary list monad only when there is an empty list. We

cannot use the same example for List+=. In fact, it turns out that

the ordinary non-empty list monad is the unique shallow degrading

of List+=. We prove this in Section 5 by showing that

µ xss = concat xss if xss is balanced

uniquely determines µ.
But first we turn to a more basic question. Given any non-empty

list monad (List+,η, µ), what can we know about η and µ? Of course,
every monad on Listwhose multiplication does not yield the empty

list for arguments that do not contain empty lists can be restricted

to a monad on List+. If two monads on List differ in their multipli-

cations only when the empty list is involved, the monad structures

obtained this way on List+ are identified, as in the case of monads

with µ given by concat and concat
′
. However, there are monads on

List+ that do not seem to arise this way.

4.2 Monads presented with one binary
operation

The theory of the ordinary non-empty list monad (List+, [−], concat)

is that of semigroups and is presented with one single binary op-

eration · and the associativity equation (x · y) · z = x · (y · z). This
theory admits a normal form format in which the only terms in

normal form are x1 · (. . . · (xn−1 ·xn) . . .) for n ≥ 1, corresponding to

[x1, . . . , xn], which are all forms that a non-empty list can take. In-

terpreting · as an operation on non-empty lists (as opposed to equiv-

alence classes of terms), we have xs · ys = list
♯
2
(xs, ys) = xs ++ ys.

We can carry out the same project we executed for list monads.

The result is in Figure 2. Compared to Figure 1 for possibly-empty

list monads, there is one entirely new equation that works, namely

(x ·y) · z = x · z. The corresponding monad on List+ was described

and used by Neves [18] under the name discrete hybrid monad.

Viewed as an operation on non-empty lists, · is in this case defined

by xs · ys = list
♯
2
(xs, ys) = µ [xs, ys] = head xs :: ys. Manes [13]

christened algebras of the theory (x · y) · z = x · (y · (x · z)) odd-
palindrome algebras, but did not observe that free odd-palindrome

algebras are non-empty lists.

Note that the last theory in Figure 2 is parameterised by a natural

numberm, and for eachm it gives a different monad. This implies

that there are infinitely many monads on List+.

Proposition 4.2. All theories with an operation · in Figure 2
define monads (List+, [−], µ) via the same particular normal form
format. These theories are infinitely many.

4.3 Monads with a different unit
In the previous examples of monads on List+, we saw different

multiplications, but the unit was [−]. Since ηX : X → List+X is

required to be natural, it must be that η x = replicate e x for some

e ≥ 1.

Recall that, for List, we do not know of a monad that has η x =
[x, x]. For List+, there are such monads. Choose

µ (xs :: xss) = head xs :: concat (map tail xss)

Then (List+,η, µ) is a monad. It has a finite presentation with a

unary operation ⟨−⟩, a ternary operation ⟨−,−,−⟩, and the equa-

tions

x = ⟨x ,x , ⟨x⟩⟩
⟨⟨x⟩⟩ = ⟨x⟩ ⟨⟨x ,y, z⟩⟩ = ⟨x⟩

⟨x ,y, ⟨z⟩⟩ = ⟨x ,y, ⟨y⟩⟩ ⟨x ,y, ⟨z,v,w⟩⟩ = ⟨x ,y, ⟨y,v,w⟩⟩

⟨x , ⟨y⟩, ⟨z⟩⟩ = ⟨x⟩ ⟨x , ⟨y⟩, ⟨z,v,w⟩⟩ = ⟨x ,v,w⟩

⟨x , ⟨y, z,v⟩,w⟩ = ⟨x , z, ⟨z,v,w⟩⟩

⟨⟨x⟩,y, z⟩ = ⟨x ,y, z⟩ ⟨⟨x ,y, z⟩,v,w⟩ = ⟨x ,v,w⟩

As operations on non-empty lists, ⟨−⟩ and ⟨−,−,−⟩ denote the

functions ⟨xs⟩ = list
♯
1
xs = µ [xs] = [head xs] and ⟨xs, ys, zs⟩ =

list
♯
3
(xs, ys, zs) = µ [xs, ys, zs] = head xs :: tail ys ++ tail zs. This

theory admits a normal form format where normal forms are terms

⟨x1,x2, ⟨x2, . . . xn−1, ⟨xn−1,xn , ⟨xn⟩⟩ . . .⟩⟩ for n ≥ 1. They corre-

spond to lists head [x1, x1] :: tail [x2, x2]++ tail (head [x2, x2] :: . . .++

. . . :: tail [xn−1, xn−1] ++ tail (head [xn−1, xn−1] :: tail [xn , xn] ++

tail [head [xn , xn]]) . . .) = [x1, . . . , xn].

There is a straightforward way of mass-producing monads on

List+ with replicate 2 as the unit. Notice that List+ X � X × ListX .

Now Id is a functor with a single monad structure, and List is

a functor with many monad structures as we have learned. The

product T0 ×T1 of the underlying functors T0, T1 of two monads

(T0,η0, µ0) and (T1,η1, µ1) always carries at least one canonical

monad structure, which is the product of the two monads. The unit

η of this monad is ηX = ⟨η0X ,η1X ⟩. In addition, there may be other

systematic monad structures, like semidirect products, or ad hoc

monad structures on T0 ×T1, not related in any systematic way to

the monad structures provided on T0 and T1.
The first monad above is the product of the identity monad with

the monad (List, [−], concat).

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

Equation Multiplication (µ xss = ...)

(x · y) · z = x · (y · z) concat xss

(x · y) · z = x · y
map head (takeWhile sglt (init xss))

++ head (dropWhile sglt (init xss) ++ [last xss])

(x · y) · z = x · z map head (init xss) ++ last xss

(x · y) · z = y · z map last (init xss) ++ last xss

(x · y) · z = x · (y · (x · z)) concat (map palindromise (init xss)) ++ last xss

(x · y) · z = xm+2
map head (takeWhile sglt (init xss)) if exists (not ◦ sglt) (init xss)

++ replicate (m + 2) (head (head (dropWhile sglt (init xss))))

map head (init xss) ++ last xss otherwise

Figure 2: Examples of monads on List+ with unit [−] from theories presentable with ·

By this construction, since we have infinitely many monad struc-

tures on List with [−] as the unit, we automatically have infinitely

many monad structures on List+ with replicate 2 as the unit. We

also have at least one such monad structure whose theory does not

admit a finite presentation.

Another simple monad on List+ with replicate 2 as the unit has

its multiplication defined by

µ xss =


[head (head xss)] if sglt xss or sglt (last xss)

map head (init xss) otherwise

++ tail (last xss)

Its theory is presentable with three operations, for list
♯
1
, list

♯
2
and

list
♯
3
. This monad does not arise from the product construction.

Rather, it is a modification of Neves’s discrete hybrid monad on

List+.

Proposition 4.3. Anymonad structure on Listwith unit [−] yields
a monad structure on List+ with unit replicate 2 via the product of
monads construction. Not every monad structure on List+ arises in
this way.

4.4 Identifying a monad by testing?
It would be nice to be able to learn a secret non-empty list monad

(List+,η, µ), i.e., identify it as a known one by finitely testing η and

µ on some arguments. For η, this takes only one test of ηX on the

single element of the singleton set X = {0}. For µ, it is clear that
in general one needs many tests. However, it is not clear whether

a finite number of tests suffices to learn that the secret monad is

some known monad on List+, such as the ordinary non-empty list

monad (List+, [−], concat).

This turns out to be impossible already for (List+, [−], concat).

For any p ≥ 2, define concatp by

concatp xss =

{
concat xss if sglt xss or all sglt xss

takep (concat xss) otherwise

Proposition 4.4. (List+, [−], concatp) is a monad for each p ≥ 2.

The proof of this is slightly difficult, but quite long and not very

interesting. We note that p = 1 does not give a monad.

Corollary 4.5. For each p ≥ 2, the monad (List+, [−], concatp)
satisfies concatp xss = concat xss for allX and xss ∈ List+(List+ X)

such that |concat xss| ≤ p (this holds for all X as soon as it holds for
X = {0, . . . ,p − 1}), but concatp , concat.

Hence we have an infinite family of monads which demonstrates

that we cannot identify a secret non-empty list monad (List+,η, µ)
as the ordinary non-empty list monad by finite testing.

4.5 Monads with no finite presentation
For List, we exhibited a monad structure with no finite presentation,

namely η = [−] and µ = concat
′′
. This multiplication cannot be

adapted for List+: the function concat
′′
does not restrict to non-

empty lists.

But similarly to the theory of the monad (List, [−], concat′′),

the theory of the monad (List+, [−], concatp), p ≥ 2, cannot have

a finite presentation. This is because terms made of operations

{list
♯
n | 1 ≤ n ≤ k} can only denote non-empty lists of length at

most max (k,p).

Proposition 4.6. None of the monads (List+, [−], concatp),p ≥ 2,
have a finite presentation.

Thus we have in fact found infinitely many monad structures on

List+ with [−] as the unit and no finite presentation of the theory.

We should notice that concat
′′ = concat0. However, there are

no p , 0 such that the data (List, [−], concatp) would give a monad.

The only value of p that works for List is 0.

4.6 Some open problems
The previous and this section are far from providing a character-

ization of all list or non-empty list monads. We briefly mention

questions we do not currently know answers for.

Multiplications that permute and duplicate. We do not have a lot

of examples of multiplications that permute elements. Can elements

be permuted without some elements being duplicated or deleted at

the same time?

What can the unit be? The unit can only be replicate e but what
can e be? Are there monads on List with e = 2 or monads on List+

with e = 3?

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

More multiplications for List from distributive laws? We showed

that, for every monad on List, one can systematically produce a

monad on List+ because List+ = Id × List.

In the converse direction, we saw that (List, [−], concat′) arises

thanks to List = Maybe · List+ from a specific distributive law of

(List+, [−], concat) over the maybe monad. Now the maybe monad

distributes in a unique way over any other monad. But distributive

laws of other monads (T ,η, µ) over the maybe monad do not always

exist, and when they do, they are constructed in ad hoc ways and

exploit the particularity of µ. Which other non-empty list monads

distribute over the maybe monad? Perhaps they all do?

Can themultiplication be identifiedwith testing? Weproved above

that checking that µ xss = concat xss for finitely many xss ∈

List+(List+X) for some finite setX for a secret monad (List+, [−], µ)
cannot suffice to conclude that µ = concat.

Can we have a similar result for some other non-empty list

monads? Specifically, are there monads (List+, [−], µ) for µ other

than concat with the property that the data (List+, [−], µp) form a

monad for all p ≥ 2 where µp is defined by

µp xss =

{
concat xss if sglt xss or all sglt xss

take p (µ xss) otherwise

This property would imply that Corollary 4.5 holds with concat

replaced by µ. Therefore µ would not be identifiable by finite testing.
It is plausible (based on quickchecking) that all monads but one

in Figure 2 have this property, so they are unlikely to be identifiable

by finite testing.

For µ for the theory with (x · y) · z = y · z, the property fails,

there is a counterexample already for p = 2. But it seems to hold

when reformulated for takeEndp.
A further question is: do the data (List, [−], µp) form a monad for

somep ≥ 1 for some of the monads (List, [−], µ) that we know? This
fails for all theories in Figure 1, except for the theory (ε,xn+2,x ·y).
We have proved that this theory gives a monad for n = 0 and p = 2.

It seems (based on quickchecking) that it gives a monad for all

n ∈ N and p ≥ 2.

5 SHALLOW DEGRADING OF List+

We now prove the theorem that we announced in the previous

section:

Theorem 5.1. Let (List+, [−], µ) be a monad such that µ xss =
concat xss if xss is balanced. Then, µ = concat.

Wefirst introduce some terminology. For a setX , wewrite List
2

+X
for List+(List+X), and similarly for List

3

+X . Given xss ∈ List
2

+X , we

call the value |concat xss| the total length of xss, denoted | |xss| |. We

call elements of the inner lists of xss atoms.

Lemma 5.2. The multiplication µ cannot invent elements, that is,
elements of µ xss are atoms of xss.

Proof. Assume y < X , and xss ∈ List
2

+(X ∪ {y}) is such that

y ∈ µ xss, but y is not an atom of xss. Consider the naturality

diagram for the inclusion ⊆: X → X ∪ {y}:

List
2

+X List
2

+(X ∪ {y})

List+X List+(X ∪ {y})

List
2

+⊆

List+⊆

µ µ

Since it is also the case that xss ∈ List
2

+X , we can apply the diagram

above to xss. The result of the ‘left–bottom’ path cannot contain y,

so neither can the result of the ‘top–right’ path, which contradicts

the assumption that y ∈ µ xss. □

Given xss = [[x1, . . . , xn1
], . . . , [z1, . . . , znk]] ∈ List

2

+X , we de-

fine its completion, denoted xss ∈ List
3

+X as

[[[x1, . . . , x1︸ ︷︷ ︸
d1

], . . . , [xn1
, . . . , xn1︸ ︷︷ ︸
d1

]], . . . ,

[[z1, . . . , z1︸ ︷︷ ︸
dk

], . . . , [znk , . . . , znk︸ ︷︷ ︸
dk

]]]

where di = (
∏k

j=1 nj)/ni . For example:

[[1, 2], [3, 4, 5]] = [[[1, 1, 1], [2, 2, 2]], [[3, 3], [4, 4], [5, 5]]]

Completion of xss is defined specifically so that multiplying the

outer two layers behaves as µ xss, while the multiplications in

µ(List+µ xss) work on balanced lists:

Lemma 5.3. Given xss ∈ List
2

+X , it is the case that

µ (List+µ xss) = concat (List+ concat xss)

This gives us the following two lemmata:

Lemma 5.4. The multiplication µ does not delete elements, that is,
the set of elements of µ xss is the same as the set of atoms of xss, for
xss ∈ List

2

+X .

Proof. Let xss ∈ List
2

+X be such that an atom x occurs in xss, but

it is not an element of µ xss. Since List+ is finitary, we can assume

that all atoms of xss are distinct. Now, consider xss. From Lemma 5.3

we know that x occurs in µ (List+µ xss), so (from associativity) it

occurs in µ (µ xss). But, since x < µ xss, it is the case that [x, . . . , x] <
µ xss, and since x does not occur anywhere else in xss, it does not

occur in µ (µ xss). Contradiction! □

Lemma 5.5. The multiplication µ does not duplicate elements, that
is, if an atom x occurs once in an xss ∈ List

2

+X , it occurs at most once
as an element of µ xss.

Proof. Assume that µ xss duplicates an atom x. Consider xss.

From Lemma 5.3 we know that µ (List+µ xss) contains the same

number of occurrences of x as xss. But since µ xss duplicates x, it
duplicates the sub-sublist [x, ..., x] in µ xss, hence µ xss contains
more occurrences of x than µ (List+µ xss) does, which means that

the outermost µ in µ (µ xss) deletes some occurrences of x. By natu-

rality, µ therefore deletes elements on every list of lists of the same

shape as µ(xss), contradicting Lemma 5.4. □

Corollary 5.6. For all xss ∈ List
2

+X , the list µ xss is a permuta-
tion of concat xss.

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

It is left to prove that it is always an identity permutation. We

proceed by induction on the total length of the list, ℓ. The cases

when ℓ = 1 and ℓ = 2 are trivial, and the actual basis for the

induction is ℓ = 3:

Lemma 5.7. For x, y, z ∈ X ,

µ [[x, y], [z]] = [x, y, z] = µ [[x], [y, z]]

We do not have a more insightful argument to support this

lemma other than an exhaustive search via a computer program

(see https://bitbucket.org/maciejpirog/degrading). Our implemen-

tation generates valid prefixes of multiplications, that is, partial

functions µ defined only on lists of lists of total length n with

µ xss = concat xss for balanced lists xss, such that for all lists of

lists of lists, µ (if defined on a particular such list) is associative.

The desired result is obtained for n = 6, in which case there are

exactly 120 valid prefixes, all satisfying Lemma 5.7.

In the following, we show that Theorem 5.1 holds also for ℓ ≥ 4,

inductively assuming it holds for all lists with total length less

than ℓ. This induction is not structural, and we make a heavy use of

naturality. For example, if ℓ = 6, we obtain the following equality:

µ [[x, y], [z], [t, u], [v]] = µ (µ [[[x, y], [z]], [[t, u], [v]]])

The inner µ on the right-hand side works on a list with 4 atoms, so

the equality indeed follows from the inductive hypothesis.

Lemma 5.8. Let xss, tss ∈ List(List+X) and ys, zs ∈ List+X be
such that:

(1) | |xss| | + |ys| + |zs| + | |tss| | = ℓ,
(2) at least one of xss and tss is not empty,
(3) at least one of xss and tss are not all-singletons, or ys and zs

are not both singletons.
Then, µ (xss ++ [ys ++ zs] ++ tss) = µ (xss ++ [ys] ++ [zs] ++ tss).

Proof. We give the proof for xss and tss both non-empty. The

proof is similar when either is empty.

µ (xss ++ [ys ++ zs] ++ tss)

= µ (µ [xss, [ys ++ zs], tss]) (induction)

= µ [µ xss, µ [ys ++ zs], µ tss] (associativity)

= µ [µ xss, ys ++ zs, µ tss] (unit)

= µ [µ xss, µ [ys, zs], µ tss] (induction)

= µ (µ [xss, [ys, zs], tss]) (associativity)

= µ (xss ++ [ys, zs] ++ tss) (induction)

= µ (xss ++ [ys] ++ [zs] ++ tss) (properties of ++)

Note that the proof above does not work when the assumption (2)

is not true, because the middle inductive step would not have fewer

atoms. It does not work when (3) is not true because the two outer

inductive steps would not be on lists with fewer atoms. □

Lemma 5.9. For xs, ys ∈ List+X such that |xs| + |ys| + 1 = ℓ, it is
the case that:

µ [xs ++ [z], ys] = µ [xs, [z], ys] = µ [xs, [z] ++ ys]

Proof. Since ℓ ≥ 3, the lists xs and ys cannot both be singletons.

Hence the result follows from applying Lemma 5.8 twice. □

The two lemmata above give us that one can ‘cut’ an inner list

into a number of inner lists, and ‘glue’ inner lists together to form

a longer inner list – as long as the list of lists is non-trivial, that
is, not a singleton and not all-singletons. From this, we obtain the

following corollary:

Lemma 5.10. Let xss, yss ∈ List
2

+X be non-trivial lists such that
concat xss = concat yss and | |xss| | = | |yss| | = ℓ. Then, µ xss =
µ yss.

Proof. Wedefine a relation∼ on non-trivial lists of total length ℓ

as the equivalence closure of the relation

[. . . , xs ++ ys, . . .] ∼ [. . . , xs, ys, . . .]

From Lemmata 5.8 and 5.9 we know that if xss ∼ yss, then µ xss =
µ yss. It is left to show that xss ∼ yss for all non-trivial lists such

that concat xss = concat yss.

We show for all non-trivial xss that if concat xss = xs++ [x], then

xss ∼ [xs, [x]], by induction on |xss| > 1:

• If |xss| = 2, then xss = [ys, zs ++ [z]] for some ys, zs. Either

zs is empty and the result is trivial, or zs is non-empty and:

xss = [ys, zs ++ [z]]

∼ [ys, zs, [z]] (definition of ∼, ∗)

∼ [ys ++ zs, [z]] = [xs, [z]] (definition of ∼)

For the above to be well-defined, we need to make sure

that the list in (∗) is non-trivial, which follows from the

assumption that ℓ > 3 (so either ys or zs is not a singleton).

• Otherwise, xss = ys :: zs :: xss
′
for non-empty ys, zs, and:

xss ∼ (ys ++ zs) :: xss′ (definition of ∼)

∼ [xs, [x]] (induction)

Then, concat xss = concat yss implies concat xss = xs ++ [x] =

concat yss for some xs, x, hence xss ∼ [xs, [x]] ∼ yss. □

The lemma above means that there exists a permutation π such

that for all non-trivial xss ∈ List
2

+X of total length ℓ:

µ xss = π (concat xss)

Lemma 5.11. Assume ℓ is odd. Let xs ∈ List+X have ℓ elements.
Then µ [xs, [z]] = π−1

xs ++ [z].

Proof. Let ℓ = 2n + 1 for a natural n. For any ys with n + 1

elements and zs with n elements, we have the following:

µ [π (ys ++ zs), [z]]

= µ [µ [ys, zs], [z]] (|ys ++ zs| = ℓ)

= µ [µ [ys, zs], µ [[z]]] (unit)

= µ (µ [[ys, zs], [[z]]]) (associativity)

= µ (µ [[ys], [zs, [z]]]) (Lemma 5.7)

= µ [µ [ys], µ [zs, [z]]] (associativity)

= µ [ys, µ [zs, [z]]] (unit)

= µ [ys, zs ++ [z]] (induction)

= ys ++ zs ++ [z] (µ for balanced lists)

https://bitbucket.org/maciejpirog/degrading

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

In particular, we use ys ++ zs = π−1
xs:

µ [xs, [z]]

= µ [π (π−1
xs), [z]] (permutation is a bijection)

= π−1
xs ++ [z] (the above)

□

Lemma 5.12. Assume ℓ is odd. Let xs, ys ∈ List+X be such that
|xs| = ℓ and |ys| = ℓ−1. Then µ [xs++ [z], ys] = π xs++π ([z]++ys).

Proof.

µ [xs ++ [z], ys] = µ [π −1(π xs) ++ [z], ys] (bijection)

= µ [µ [π xs, [z]], ys] (Lemma 5.11)

= µ [µ [π xs, [z]], µ [ys]] (unit)

= µ (µ [[π xs, [z]], [ys]]) (associativity)

= µ (µ [[π xs], [[z], ys]]) (Lemma 5.7)

= µ [µ [π xs], µ [[z], ys]] (associativity)

= µ [µ [π xs],π ([z] ++ ys)] (Lemma 5.10)

= µ [π xs,π ([z] ++ ys)] (unit)

= π xs ++ π ([z] ++ ys) (µ for balanced lists)

□

Lemma 5.13. If ℓ is odd, then π is identity.

Proof. Let ℓ = 2n + 1 and:

• xss = [[x, x′], [y, y′], ..., [z, z′]] be a list with n + 1 elements

(i.e., a list of lists with 2n + 2 = ℓ + 1 atoms),

• tss = [[t, t′], ..., [u, u′]] be a list with n elements (i.e., a list of

lists with 2n = ℓ − 1 atoms).

Then:

µ [µ xss, µ tss]

= µ [[x, x′, y, y′..., z, z′], [t, t′, ..., u, u′]] (balanced lists)

= π [x, x′, y, y′, ..., z] ++ π [z′, t, t′, ..., u, u′] (Lemma 5.12, ∗)

But:

µ (µ [xss, tss]) = µ (π (xss ++ tss)) (Lemma 5.10, ∗∗)

By associativity, (∗) and (∗∗) are equal. Since µ in (∗∗) works on

a balanced list (each inner list is of length two, of the form [x, x′]),

(∗∗) is equal to [..., z, z′, ...] (that is, z and z′ are next to each other).

But in (∗), z is somewhere in the first half of the list, while z
′
is

somewhere in the second half of the list. This means that π in (∗)

puts z as the last element of the left-hand side list, and z
′
as the first

element of the right-hand side list, that is, preserves their original

positions.

Next, note that in (∗∗), x′ is right after x, which means that the

left-hand side π in (∗) puts x′ at the second position (since x is

preserved as the first element). This means that the second position

is also preserved. Also, in (∗∗), t′ is right after t. In the right-hand

side π in (∗), the position of t is preserved (because it is the second

element on the list), so the right-hand side π in (∗) puts t′ as the

third element. This means that the third element is also preserved.

The same reasoning now applies to y, y
′
, and the rest of the list. □

Lemma 5.14. Let xs, ys ∈ List+X be such that |xs|+ |ys| = ℓ. Then,
µ [xs, ys] = xs ++ ys.

Proof. Case 1: If ℓ is even, one can find two lists, zs and ts such

that |zs| = |ts| and zs ++ ts = xs ++ ys. Then:

µ [xs, ys] = µ [zs, ts] (Lemma 5.10)

= zs ++ ts (µ for balanced lists)

= xs ++ ys (assumption)

Case 2: ℓ is odd. Use Lemma 5.13. □

We can finally prove the main theorem:

Proof of Theorem 5.1. To show that µ xss = concat xss, we

proceed by induction on |xss|, that is, the number of inner lists of

xss. If |xss| = 1, the theorem holds trivially from the unit law. If

|xss| = 2, the theorem follows from Lemma 5.14. If |xss| > 2 and all

inner lists are singletons, the theorem follows from the other unit

law. Otherwise, xss = [xs, ys] ++ zss for some xs, ys, and zss. Then:

µ ([xs, ys] ++ zss)

= µ (µ ([[xs, ys]] ++map [−] zss)) (induction on ℓ)

= µ ([µ [xs, ys]] ++map (µ ◦ [−]) zss) (associativity)

= µ ([xs ++ ys] ++map (µ ◦ [−]) zss) (Lemma 5.14)

= µ ([xs ++ ys] ++ zss) (unit)

= concat ([xs ++ ys] ++ zss) (induction on |xss|)

= concat ([xs, ys] ++ zss) (properties of concat)

□

6 INITIAL DEGRADINGS
So far, we have considered a two-step degrading: first, we construct

a functor via a colimit, and then we check if there is a unique

extension of the graded-monad structure to a non-graded structure.

While this construction has its advantages (namely, the underlying

functor agrees with the intuition about existential quantification of

grades), and it gave us an opportunity to study the space of monad

structures on lists, we should also put it in the categorical context, to

wit: whether it is characterised by some sort of a universal property.

The one we inspect is the notion that deserves to be called initial

degrading:

Definition 6.1. Let (T̂ , η̂, µ̂, λ) be a degrading from Definition 2.9.

We say that it is initial if, for any other degrading (S,ηS , µS , λS),
there is a unique natural transformation h : T̂ ⇒ S such that the

following equations hold:

λSд,X = hX ◦λд,X ηSX = hX ◦η̂X µSX ◦hSX ◦T̂hX = hX ◦ µ̂X

Unlike for a colimit (Definition 2.10), the natural transformation

h is only required to exist when S forms a degrading, and is only

required to be unique amongst those that preserve the monad struc-

ture. However, h is required to preserve the monad structure. Initial

degradings are unique up to structure-preserving isomorphism.
1

1
For the categorically minded reader: A graded monad on Set is a lax monoidal

functor from G to [Set, Set]. An initial degrading is a colimit of (T , η, µ) taken in

the 2-categoryMonCat of monoidal categories, lax monoidal functors and monoidal

transformations, instead of the 2-category Cat of categories, functors and natural

transformations. An algebraic Kan extension (an algebraic colimit in our situation) is

a colimit inMonCat that is also a colimit in Cat.

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

Definition 6.1 is an unpacked definition of a (non-graded-)monad

reflection of a graded monad. In particular, one may define the

category GMnd whose objects are pairs (G,T) of a preordered

monoid and a G-graded monad, and morphisms (G,T) → (G′,T ′)

are pairs consisting of a preordered monoid morphism F : G → G′

and a monoidal transformation T ⇒ T ′ · F . A non-graded monad

S can be seen as an object (1, S), where 1 is the trivial preordered
monoid with one element. Thus, we may see the category Mnd of

monads as a full subcategory of the category GMnd. The initial
degrading of a graded monad T is then the free object inMnd with

respect to the subcategory inclusion functor generated by T .
Both List= and List+= have initial degradings and and we con-

struct them below. Note that, if the initial degrading is given by the

colimit, i.e., is a shallow degrading, then it is the unique shallow

degrading. For List=, we have shown that there are multiple shallow

degradings. Thus, if an initial degrading exists, then it cannot be

given by the colimit. Surprisingly, even though List+= does have a

unique shallow degrading, it does not match the initial one.

We construct the initial degrading of the graded monad List+=

of non-empty lists. The initial degrading in the possibly-empty case

has an almost identical construction: just replace List+ with List

below.

For each set X , define T̂0X inductively with two constructors,

lf (“leaf”) and nd (“node”), so that lf x ∈ T̂0X for each x ∈ X and

nd ts ∈ T̂0X for each ts ∈ List+(T̂0X). We let ≈ be the smallest

equivalence relation on T0X closed under the following three rules.

The first is a congruence rule, the second and third are there to

satisfy the definition of degrading.

nd [t1, . . . , tn] ≈ nd [t′
1
, . . . , t′n] if t

′
i ≈ t

′
i for each i

nd [lf x] ≈ lf x if x ∈ X

nd (List+ nd tss) ≈ nd (concat tss)

if tss ∈ List+(List+(T̂0X)) is balanced

We make the quotient T̂X = (T̂0X)/≈ into a monad (T̂ , η̂, µ̂).
The unit is the singleton operation η̂ x = lf x (we implicitly take

equivalence classes). The action of the functor T̂ on functions f ,
and the multiplication µ̂, are defined inductively:

T̂ f (lf x) = lf (f x) T̂ f (nd ts) = nd (List+ (T̂ f) ts)

µ̂ (lf t) = t µ̂ (ndtts) = nd (List+ µ̂ tts)

Checking that this is a monad is routine. To get a degrading of

List+=, we also need natural transformations λn : List+=n ⇒ T̂ .
These are given by λn [x1, . . . , xn] = nd [lf x1, . . . , lf xn]. The re-

quirements in the definition of degrading follow from the definition

of ≈.

Theorem 6.2. The monad (T̂ , η̂, µ̂) together with the natural trans-
formations λn defined above form the initial degrading of the graded
monad List+= of non-empty lists.

Proof. We give the proof of initiality. Suppose that (S,ηS , µS)
forms another degrading with λSn : List+=n ⇒ S . We need to

show that there is a unique natural transformation h : T̂ ⇒ S that

commutes with the structure of the degradings. For uniqueness of

h on nd we have

h (nd ts) = h (µ̂(λ |ts |ts)) (definitions)

= µS (h(T̂h(λ |ts |ts))) (h commutes with µ)

= µS (h(λ |ts |(List+ h ts))) (λ natural)

= µS (λS
|ts |

(List+ h ts)) (h commutes with λ)

Similar reasoning can be applied to lf , showing that h must be given

inductively by

h (lf x) = ηSx h (nd ts) = µS (λS
|ts |

(List+ h ts))

This is well-defined (with respect to≈) because themonad (S,ηS, µS)
is required to agree with the graded monad on balanced lists. In

particular, for tss ∈ List+=n (List+=m (T̂X)) balanced, we have

h (nd (List+ nd tss))

= µS (λSn (List+=n (µ
S ◦ λSm ◦ List+=mh)tss)) (definitions)

= µS (SµS (λSn (List+=n (λ
S
m ◦ List+=mh) tss)))) (λS natural)

= µS (µS (λSn (List+=n (λ
S
m ◦ List+=mh) tss)))) (µS associative)

= µS (λSn ·m (concat(List+=n (List+=mh) tss)) (balanced)

= h (nd (concat tss)) (definitions)

It is easy to check the other two rules of ≈, and that h commutes

with the structure of the degradings. □

For non-empty lists, we have proved that there is only onemonad

structure on List+ that agrees with the graded monad. In the re-

mainder of this section we show that, even though the monad

structure is unique, the colimit of List+= still does not form the

initial degrading.

By uniqueness, if List+ does form a degrading, then the unit

is singleton and the multiplication is concatenation. The natural

transformation h : T̂ ⇒ List+ in this case is given by

h (lf x) = [x] h (nd ts) = concat (List+ h ts)

We use a notion of balancedness for elements of T̂0X , defined
inductively by the following rules:

• lf x is balanced for all x ∈ X .

• nd ts is balanced if every element of ts ∈ List+(T̂0X) is bal-

anced and List+ h ts ∈ List+(List+X) is a balanced list of

lists.

This notion of balancedness is crucially preserved by ≈. The

proof relies on the following lemma about balancedness for lists of

lists.

Lemma 6.3. Suppose that tss ∈ List+=n (List+=m (T̂X)). The fol-
lowing are equivalent:

(1) List+=n ·m h (concat tss) ∈ List+=n ·m (List+X) is balanced.
(2) There exists k > 0 such that

List+=n (List+=mh) tss ∈ List+=n (List+=m (List+=k X))

(3) List+=n (concat ◦ List+=mh) tss ∈ List+=n (List+X) is bal-
anced, and List+=m h ts ∈ List+=m (List+X) is balanced for
every ts ∈ tss.

Degrading Lists PPDP ’20, September 8–10, 2020, Bologna, Italy

Proof. Showing that (1) and (2) are equivalent is simple. To

show (2) implies (3), note that List+=m h ts ∈ List+=m (List+=k X)

is balanced for each ts ∈ tss, hence so is

List+=n (concat ◦ List+=mh) tss ∈ List+=n (List+=m ·k X)

To show that (3) implies (2), let tss = [ts1, . . . , tsn]. Then for each i
we have concat (List+=n h tsi) ∈ List+=m · |tsi |X , and balancedness

of List+=n (concat ◦ List+=mh) tss impliesm · |ts1 | = · · · =m · |tsn |,

so |ts1 | = · · · = |tsn | is a suitable k . □

Lemma 6.4. Suppose that t ≈ t
′ for t, t′ ∈ T̂0X . Then t is balanced

if and only if t′ is balanced.

Proof. By induction on the derivation of t ≈ t
′
. For lf x ≈

nd [lf x], both sides are balanced. For nd (concat tss) ≈

nd (List+ nd tss) where tss ∈ List+(List+(T̂0 X)) is balanced, note

that by definition nd (concat tss) is balanced if and only if both ev-

ery atom of tss is balanced, and List+ h (concat tss) ∈ List+(List+X)

is balanced. The latter is equivalent to (3) in Lemma 6.3, and hence

together they are equivalent to balancedness of nd (List+ nd tss).

Finally, if ti ≈ t
′
i for all i , then nd[t1, . . . , tn] is balanced if and only

if each ti is balanced and the lengths of h ti are all the same. Since

ti ≈ t
′
i implies h ti = h t′i , this is equivalent to balancedness of

nd [t1, . . . , tn]. □

However, the natural transformation h identifies balanced and

unbalanced elements ofTX , and this implies List+ cannot form the

initial degrading.

Theorem 6.5. The functor List+, together with the inclusions λn :

List+=n ⇒ List+, does not form an initial degrading of List+=.

Proof. Suppose that List+ does form an initial degrading in

this way. The unit must be singleton and the multiplication must

be concatenation by Theorem 5.1, and hence we have a natural

transformation h : T̂ ⇒ List+ defined as above. Since T̂ forms a

degrading, there is a natural transformation h−1 : List+ ⇒ T̂ that

commutes with the structure of the two degradings. But T̂ is also

initial by Theorem 6.2, so h−1 must be the inverse of h.
To determine h−1, note that

[x1, . . . , xn] = h (nd [lf x1, . . . , lf xn])

Since h−1 is the inverse of h, this implies

h−1[x1, . . . , xn] = nd [lf x1, . . . , lf xn]

Finally, we obtain a contradiction by considering an unbalanced

element of T̂X , such as nd [lf x, nd[lf y, lf z]]. We have

nd [lf x, nd [lf y, lf z]] = h−1(h (nd [lf x, nd [lf y, lf z]]))

= h−1[x, y, z]

= nd [lf x, lf y, lf z]

but the latter is balanced, contradicting Lemma 6.4. □

7 DISCUSSION
As our results suggest, associating monads to graded monads as

envisaged by Fritz and Perrone [8] is a subtle endeavour. On the one

hand, canonical degradings given by universal constructions are

not necessarily the most natural or useful ones. On the other hand,

it also seems that the existence and canonicity of degradings can

be shown only on a case-by-case basis hinging on the very specific

properties of a given graded monad, rather than generalities.

There are some well-studied problems related to our results on

list monads, for example, completing an object mapping to obtain a

functor, that is, inventing its action onmorphisms [2, 3, 5]. However,

to our knowledge there has been little work on the totalities of pos-

sible monad structures on set endofunctors, either in general or in

specific cases. Some examples are the work by Manes on extending

set functors to (approximations of) monads [13], results by Manes

and Mulry [14], Klin and Salamanca [11], Zwart and Marsden [24]

about (non-)existence of distributive laws between various monads,

or Uustalu’s [22] characterisation of monad structures on container

functors (in the sense of Abbott et al. [1]). Other results of more

combinatorial nature include enumerating preorders on monads

by Katsumata and Sato [10, 20], or describing monads for theories

with “polynomial” Cayley representations by Piróg et al. [19].
In this paper, we give a number of constructions of monads on

List and List+, but invent few specific properties that would apply to

all monad structures on them. Hence, an interesting open question

is if a complete classification of all monad structures on List or

List+ is possible. The only result that gives us some constraints on

possible structures is Theorem 5.1. We managed to prove it using

elementary means, but its assumption about coherence with the

usual structure in the balanced case is rather strong. It seems that to

obtainmore universal results, one needs to applymore heavyweight

combinatorial machinery.

Acknowledgments. We thank Flavien Breuvart, Jeremy Gibbons,

Renato Neves, Paolo Perrone and Exequiel Rivas for discussions

and our anonymous reviewers for many useful remarks. This re-

search was supported by the Icelandic Research Fund project grant

no. 196323-052. T.U. was also supported by the Estonian Ministry of

Education and Research institutional research grant no. IUT33-13.

REFERENCES
[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers: Con-

structing Strictly Positive Types. Theoretical Computer Science 342, 1 (2005), 3–27.
https://doi.org/10.1016/j.tcs.2005.06.002

[2] Artur Barkhudaryan. 2003. Endofunctors of Set Determined by Their Object Map.

Applied Categorical Structures 11, 6 (2003), 507–520. https://doi.org/10.1023/a:

1026177620363

[3] Artur Barkhudaryan, Robert El Bashir, and Věra Trnková. 2003. Endofunctors of

Set and Cardinalities. Cahiers de topologie et géométrie différentielle catégoriques
44, 3 (2003), 217–239.

[4] Richard S. Bird. 2006. Functional Pearl: A Program to Solve Sudoku. Jour-
nal of Functional Programming 16, 6 (2006), 671–679. https://doi.org/10.1017/

s0956796806006058

[5] Daniela Cancila, Furio Honsell, and Marina Lenisa. 2006. Functors Determined

by Values on Objects. Electronic Notes in Theoretical Computer Science 158 (2006),
151–169. https://doi.org/10.1016/j.entcs.2006.04.009

[6] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’00, Montreal, Canada,
Sept. 18–21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, New York,

268–279. https://doi.org/10.1145/351240.351266

[7] Ulrich Dorsch, StefanMilius, and Lutz Schröder. 2019. GradedMonads andGraded

Logics for the Linear Time - Branching Time Spectrum. In 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amster-
dam, the Netherlands, Wan Fokkink and Rob van Glabbeek (Eds.). Leibniz Int.

Proceedings in Informatics, Vol. 140. Dagstuhl Publishing, Saarbrücken/Wadern.

https://doi.org/10.4230/lipics.concur.2019.36

[8] Tobias Fritz and Paolo Perrone. 2018. A Criterion for Kan Extensions of Lax

Monoidal Functors. arXiv:1809.10481 [math.CT]

[9] Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics of Effect

Systems. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1023/a:1026177620363
https://doi.org/10.1023/a:1026177620363
https://doi.org/10.1017/s0956796806006058
https://doi.org/10.1017/s0956796806006058
https://doi.org/10.1016/j.entcs.2006.04.009
https://doi.org/10.1145/351240.351266
https://doi.org/10.4230/lipics.concur.2019.36
http://arxiv.org/abs/1809.10481

PPDP ’20, September 8–10, 2020, Bologna, Italy Dylan McDermott, Maciej Piróg, and Tarmo Uustalu

of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
Suresh Jagannathan and Peter Sewell (Eds.). ACM, New York, 633–646. https:

//doi.org/10.1145/2535838.2535846

[10] Shin-ya Katsumata and Tetsuya Sato. 2013. Preorders on Monads and Coalgebraic

Simulations. In Foundations of Software Science and Computation Structures -
16th International Conference, FOSSACS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, Frank Pfenning (Ed.). Lecture Notes in Computer Science, Vol. 7794.

Springer, Cham, 145–160. https://doi.org/10.1007/978-3-642-37075-5_10

[11] Bartek Klin and Julian Salamanca. 2018. Iterated Covariant Powerset Is Not a

Monad. Electronic Notes in Theoretical Computer Science 341 (2018), 261–276.

https://doi.org/10.1016/j.entcs.2018.11.013

[12] Seerp Roald Koudenburg. 2015. Algebraic Kan Extensions in Double Categories.

Theory and Applications of Categories 30, 5 (2015), 86–146.
[13] Ernie Manes. 2003. Monads of Sets. In Handbook of Algebra, Vol. 3, Michiel

Hazewinkel (Ed.). Elsevier, Amsterdam, 67–153. https://doi.org/10.1016/

s1570-7954(03)80059-1

[14] Ernie Manes and Philip S. Mulry. 2008. Monad Compositions II: Kleisli Strength.

Mathematical Structures in Computer Science 18, 3 (2008), 613–643. https://doi.

org/10.1017/s0960129508006695

[15] Paul-André Melliès. 2017. The Parametric Continuation Monad. Mathematical
Structures in Computer Science 27, 5 (2017), 651–680. https://doi.org/10.1017/

S0960129515000328

[16] Stefan Milius, Dirk Pattinson, and Lutz Schröder. 2015. Generic Trace Semantics

and Graded Monads. In 6th Conference on Algebra and Coalgebra in Computer
Science, CALCO 2015, June 24–26, 2015, Nijmegen, The Netherlands, Lawrence S.
Moss and Paweł Sobociński (Eds.). Leibniz Int. Proceedings in Informatics, Vol. 35.

Dagstuhl Publishing, Saarbrücken/Wadern, 253–269. https://doi.org/10.4230/

lipics.calco.2015.253

[17] Alan Mycroft, Dominic Orchard, and Tomas Petricek. 2016. Effect Systems

Revisited—Control-Flow Algebra and Semantics. In Semantics, Logics, and Calculi:
Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion
of Their 60th Birthdays, Christian W. Probst, Chris Hankin, and René Rydhof

Hansen (Eds.). Lecture Notes in Computer Science, Vol. 9560. Springer, Cham,

1–32. https://doi.org/10.1007/978-3-319-27810-0_1

[18] Renato Neves. 2018. Hybrid Programs. Ph.D. Dissertation. University of Minho.

[19] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Equational Theories

and Monads from Polynomial Cayley Representations. In Foundations of Software
Science and Computation Structures - 22nd International Conference, FOSSACS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Mikołaj Bojańczyk and

Alex Simpson (Eds.). Lecture Notes in Computer Science, Vol. 11425. Springer,

Cham, 453–469. https://doi.org/10.1007/978-3-030-17127-8_26

[20] Tetsuya Sato. 2014. Identifying All Preorders on the Subdistribution Monad.

Electronic Notes in Theoretical Computer Science 308 (2014), 309–327. https:

//doi.org/10.1016/j.entcs.2014.10.017

[21] Alexander Smirnov. 2008. Graded Monads and Rings of Polynomials. Jour-
nal of Mathematical Sciences 151 (2008), 3032–3051. https://doi.org/10.1007/

s10958-008-9013-7

[22] Tarmo Uustalu. 2017. Container Combinatorics: Monads and Lax Monoidal Func-

tors. In Topics in Theoretical Computer Science - Second IFIP WG 1.8 International
Conference, TTCS 2017, Tehran, Iran, September 12-14, 2017, Proceedings, Mo-

hammad Reza Mousavi and Jiří Sgall (Eds.). Lecture Notes in Computer Science,

Vol. 10608. Springer, Cham, 91–105. https://doi.org/10.1007/978-3-319-68953-1_8

[23] Mark Weber. 2016. Algebraic Kan Extensions Along Morphisms of Internal

Algebra Classifiers. Tbilisi Mathematical Journal 9, 1 (2016), 65–142. https:

//doi.org/10.1515/tmj-2016-0006

[24] Maaike Zwart and Dan Marsden. 2019. No-Go Theorems for Distributive Laws.

In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019. IEEE, Los Alamitos, CA, 1–13. https:

//doi.org/10.1109/lics.2019.8785707

https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1007/978-3-642-37075-5_10
https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1016/s1570-7954(03)80059-1
https://doi.org/10.1016/s1570-7954(03)80059-1
https://doi.org/10.1017/s0960129508006695
https://doi.org/10.1017/s0960129508006695
https://doi.org/10.1017/S0960129515000328
https://doi.org/10.1017/S0960129515000328
https://doi.org/10.4230/lipics.calco.2015.253
https://doi.org/10.4230/lipics.calco.2015.253
https://doi.org/10.1007/978-3-319-27810-0_1
https://doi.org/10.1007/978-3-030-17127-8_26
https://doi.org/10.1016/j.entcs.2014.10.017
https://doi.org/10.1016/j.entcs.2014.10.017
https://doi.org/10.1007/s10958-008-9013-7
https://doi.org/10.1007/s10958-008-9013-7
https://doi.org/10.1007/978-3-319-68953-1_8
https://doi.org/10.1515/tmj-2016-0006
https://doi.org/10.1515/tmj-2016-0006
https://doi.org/10.1109/lics.2019.8785707
https://doi.org/10.1109/lics.2019.8785707

	Abstract
	1 Introduction
	2 Degrading Graded Monads
	3 Monads on List
	3.1 Monads to degrade List<= and List=
	3.2 Monads with a nullary-binary presentation
	3.3 A monad with no finite presentation
	3.4 Monads with a different unit
	3.5 Monads isomorphic via reverse

	4 Monads on List+
	4.1 Monads to degrade List+<= and List+=
	4.2 Monads presented with one binary operation
	4.3 Monads with a different unit
	4.4 Identifying a monad by testing?
	4.5 Monads with no finite presentation
	4.6 Some open problems

	5 Shallow Degrading of List+
	6 Initial Degradings
	7 Discussion
	References

