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Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a type- and memory-safe C++ library for effect handlers with a high-level, object-
oriented interface. We demonstrate that effect handlers can be successfully applied in imperative systems
programming languages with manual memory management. Through a collection of examples, we explore how
to program effectively with effect handlers in C++, discuss the intricacies and challenges of the implementation,
and show that despite its limitations, cpp-effects performance is competitive and in some circumstances
even outperforms state-of-the-art approaches such as C++20 coroutines and the libmprompt library for
multiprompt delimited control.

1 INTRODUCTION

Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects — both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definition
and their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, unlike the case of programming with monads. It also makes the job of instrumenting
existing code possible without extensive rewriting.

One application of effect handlers which is emerging as increasingly important is lightweight
cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,
message-passing actors, etc. Multiple such user-defined concurrency abstractions compose seam-
lessly, to obtain, for example, nested generators, or threads in which every thread has its own
scheduled pool of message-passing actors. The advantage of using handlers is that the program-
mer can fine-tune all the details (schedulers, communication channels, cancellation policy, error
handling), while being able to define them on a relatively high level in a type-safe manner, which
would be hard to achieve with lower-level tools, such as a bare context-switching mechanism.

The origins of effect handlers [Plotkin and Pretnar 2009, 2013] lie in the realm of functional
programming [Kammar et al. 2013], first as a tool to extend the capabilities of the formal semantics
of algebraic effects [Plotkin and Power 2001, 2002, 2003], later as a distinctive feature of several
experimental programming languages [Bauer and Pretnar 2015; Convent et al. 2020; Hillerstrém and
Lindley 2016; Leijen 2017b]. Now more mainstream programming languages are beginning to adopt
them as built-in features, for example Multicore OCaml [Sivaramakrishnan et al. 2021] (soon to be
released as part of OCaml 5.0) and Uber’s Pyro language for probabilistic programming [Bingham
et al. 2019]. Effect handlers heavily influenced the design of the React GUI framework [Meta
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2022], for instance, inspiring the design of “React Hooks”. Effect handlers are also central to the
code navigation functionality of GitHub. This functionality depends on the GitHub Semantic
library [GitHub 2022], which itself depends fundamentally on effect handlers in order to allow
analyses to scale modularly to support multiple languages and features.

In this paper, we address the open question of whether effect handlers can be meaningfully
exploited in system programming languages, such as C++, which allow for low-level programming
with a focus on performance, but also include sophisticated mechanisms for high-level low-cost
abstractions, such as objects and classes. We address this problem by implementing and evaluating
cpp-effects, a reasonably performant C++ library for programming with effect handlers. It is
built around the stack-switching mechanism provided by the boost . context library [Boost 2022].
Our handlers are one-shot, meaning that suspended computations can only be resumed once. In
this style, resumptions are more akin to mutable linear resources, rather than the immutable (and
copyable) continuations of functional languages, which is in accord with how stack and memory
are manipulated in C++ via RAII and move semantics [Combette and Munch-Maccagnoni 2018].

The main contributions of this paper are the following:

(1) A usable library for effect handlers in C++. The design goal of our library is to reconcile
an ergonomic API with type- and memory-safety. The library requires no additional compiler
support and incurs no performance penalties for code that does not use its features. We
argue that this library is not merely a proof-of-concept exercise, but can offer a decisive step
towards the incorporation of effect handlers into C++ programming practice.

(2) An evaluation of programming with handlers in an object-oriented system pro-
gramming language. Effect handlers have been previously implemented in object-oriented
languages with managed (garbage-collected) memory [Brachthiuser et al. 2018; Inostroza and
van der Storm 2018], and also in C [Leijen 2017a] but without providing a type-safe API. In our
current implementation we show that the paraphernalia of object orientated programming
plays a key role in helping overcome the challenges of low-level programming, namely the
use of templates (instead of generics), value types, and direct memory management in the
absence of garbage collection. We discuss in depth some further difficulties of programming
with effect handlers in such a setting. For example, the style of programming cannot be
ported wholesale from functional languages, since such naive implementations will quickly
overflow the stack. Such problems require specific solutions, which we provide.

(3) Higher-level library on top of a low-level core. The core boost.context library suffers
from limited functionality, but enjoys the benefits of small size and wide availability. Our
library is built on top of it, in pure C++, so it is as portable as boost.context itself. In fact it
should be easy to replace boost.context with some other backend for similar low-level stack
manipulations. Our design allows for a clear separation between the architecture-specific
core and the implementation of handlers using abstractions provided by the language. It can
serve as a recipe for libraries in other languages, and in the implementation of compilers of
languages with native effect handlers. In the particular case of a compiler, the benefit is that
the compiler’s backend need only provide a basic stack-switching mechanism, while the rest
of the abstraction can be implemented entirely in the frontend.

The focus of this paper is twofold: the programmer’s experience of using effect handlers in C++
and the implementation of the library.

Section 2 discusses effects and their handlers on some typical examples: mutable state, cooperative
threads, message-passing actors, and generators. These examples also illustrate the way effect
handlers can be used in the OO setting: mutable state can be implemented using native mutable
state; a scheduler has the familiar shape of a while-loop that picks the process to be resumed; actors
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can be implemented as a composition of state and threads. We discuss how the lack of tail-call
optimisation and the use of value types and templates can adversely affect the experience of using
handlers, when compared to Java or functional languages, but we also show how some commonly
used workarounds can be successfully applied here. We also discuss how the design of the library
allows for some optimisations that can be applied by the programmer to make the code faster
and more readable, e.g., a tail- and self-resumptive command clause in a handler can be explicitly
marked as such, and in effect can be sped up by avoiding context switching altogether. Section 3
takes a closer look at the implementation details of effect handlers. Our approach is based on a
stack of active handlers, each storing a call-stack segment (a stacklet), used to evaluate the handled
computation. This is a known implementation strategy, used for example in the Multicore OCaml
compiler [Sivaramakrishnan et al. 2021]. However, due to our particular setting, we must address a
number of novel obstacles. First we show that OO abstractions and metaprogramming capabilities
of C++ are enough to provide an ergonomic, type-safe API for handlers as a library. Then we tackle
issues of memory-safety and performance. Section 4 presents some microbenchmarks. Though our
main focus is the ergonomics of programming with cpp-effects, and we are sure there is plenty of
scope to improve performance, these benchmarks provide evidence that cpp-effects performance
can be competitive with the existing mainstream. In particular, we compare with generators built
on top of C++20 coroutines, and mutable state built using the 1ibmprompt library [Leijen and
Sivamarakrishnan 2022]. Section 5 discusses related work and Section 6 concludes.
Our library is available at:

https://github.com/maciejpirog/cpp-effects

2 THE PROGRAMMER’S INTERFACE

In this section, we introduce the features of cpp-effects through a collection of examples including
mutable state, lightweight cooperative threads, actors, and generators. These examples and more
(e.g. async/await) are available with the library.

2.1 Mutable state

We begin with a basic mutable state effect in order to illustrate how effects and handlers work in
our library. The main purpose of this example is not to illustrate anything like the full power of
effects and handlers, but rather to give a minimal overview of the syntax and semantics of the
core features of our library. Having said that, it turns out that the mutable state effect is a crucial
component for actors (Section 2.3). The aim is to abstract over what it means to read and write
to a single state cell. The interface will be given by two commands: put writes a value to the state
cell, and Get reads the current. Different effect handlers provide different implementations of these
commands: an implementation might implement the state cell on the local heap in the standard
way, but it might alternatively store it remotely or apply more complex policies such as caching.
First let us define the two commands which constitute the effect interface.
template <typename S>
struct Put : Command<void> {
S newState;
Y
template <typename S>
struct Get : Command<S> { };

A command is defined as a class (or a struct, which is really just a class whose members are all
public) that inherits from the Command class. The template parameter is the return type for the
command. Arguments are supplied to the command as fields of the class. The two commands are
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defined as templates in order to enable them to be parameterised by the underlying type of the
state cell (s). The put command takes a single argument newsState of type s and does not return a
value (denoted by void). The Get command takes no arguments and returns a value of type s.

In order to invoke a command we use the InvokeCmd static member function from the oneshot class.
For convenience, we define templated wrapper functions for invoking each of our two commands.

template <typename S>
void put(S s) {
OneShot: : InvokeCmd (Put<S>{{}, s});

3
template <typename S>
S get( {
return OneShot: :InvokeCmd(Get<S>{});
3
We can now write state computations such as an increment function inc for integer state.
int inc()
{

put(get<int>() + 1);
return get<int>();

}

This function increments the current value of the state and returns the updated value of the state.

So far we have given the state interface as a pair of commands and shown how to invoke them.
However, we have not yet given them a meaning. In order to do that, we must define a handler. We
now define a state handler that simply represents the state cell as a private member.

template <typename Answer, typename S>
class Stateful : public Handler<Answer, Answer, Put<S>, Get<S>> {
public:
Stateful(S initialState) : state(initialState) { }
private:
S state;
Answer CommandClause(Put<S> p, Resumption<void, Answer> r) override
{
state = p.newState;
return std::move(r).TailResume();

}

Answer CommandClause(Get<S>, Resumption<S, Answer> r) override

{

return std::move(r).TailResume(state);

}

Answer ReturnClause(Answer a) override

{

return a;
}
3
A handler is defined as a class that inherits from the Handler class. The general idea is that a handler
handles some computation by interpreting the commands used by that computation and the return
type of the computation appropriately. Although not the case here, the return type of the handler
and the return type of the computation being handled may differ. These are determined respectively
by the return and argument types of the return clause. The template parameters are: the return
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type of the handler, the return type of the computation being handled, and a list of all handled
commands. In this case the final return type and original return type are both Answer. We abstract
over this answer type and the type of the state cell using a template.

Each command is given a meaning by overloading the CommandClause method. Here we have
one overload for put and another one for Get. The second argument r to the CommandClause method
is a resumption. It is an object that captures the rest of the computation being handled. Its first
template parameter is the return type of the command and its second template parameter is the
final return type. Our use of resumptions in this example is not particularly interesting (we pass
the return value to the resumption once at the end of each command clause), but as we shall soon
see resumptions are central for allowing effect handlers to express features such as concurrency.
An important aspect of resumptions that is visible here is that they are one-shot. They are movable
but not copyable. After resuming, the resumption object becomes invalid. When a resumption
object goes out of scope the computation it captures is deleted (i.e., the corresponding stack is
unwound). Being one-shot allows resumptions to be implemented efficiently using non-copyable
data structures such as various kinds of system stack or fibers. Indeed, our implementation is built
on the non-copyable fibers of the boost.context library.

The put command clause updates the state member with the new value and then invokes the
resumption with no argument (void). The Get command clause invokes the resumption with the
current state. The ReturnClause method defines how to process the final result value. In this case it
is simply returned as is.

Having defined a handler we can now invoke it on a computation.

int main()

{
std::cout << OneShot::Handle<Stateful<int, int>>(inc, 100); // Output: 101

3

A computation is handled using the static function oneshot: :Handle. The first argument is the
computation. Subsequent arguments are forwarded as arguments to the constructor of stateful.

2.2 Cooperative lightweight threads

Now we move onto an example, cooperative lightweight threads, that begins to demonstrate the real
power of effect handlers. We begin by defining two commands and convenient wrapper functions.

struct Yield : Command<void> { };

struct Fork : Command<void> {
std: : function<void()> proc;

3

void yield()

{
OneShot: : InvokeCmd(Yield{});

}

void fork(std::function<void()> proc)

{
OneShot: : InvokeCmd(Fork{{}, proc});

3

The vield command yields control to another lightweight thread. The Fork command forks off a
new lightweight thread. They can be used in the following code, where starter starts a number of
threads, each printing out a number in a loop.
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void worker(int k)

{
for (int i = 0; i < 10; ++i) {
std::cout << k;
yield();
}
}
void starter()
{
for (int i = @; i < 5; ++i) {
fork([=10{ worker(i); 1);
}
}

The intention is that calling starter in a scheduler will print out a stream of interleaved digits.
A handler for vield and Fork defines a scheduler. Here we implement the round-robin strategy.

using Res = Resumption<void, void>;

class Scheduler : public Handler<void, void, Yield, Fork> {
public:
static void Start(std::function<void()> f)
{
Run(f);
while (!queue.empty()) {
auto resumption = std::move(queue.front());
queue.pop_front();
std: :move(resumption).Resume();

¥
private:
static std::list<Res> queue;
static void Run(std::function<void()> f)

{
OneShot: :Handle<Scheduler>(f);

}

void CommandClause(Yield, Res r) override

{

queue.push_back(std: :move(r)); // push the captured resumption on the queue

}

void CommandClause(Fork f, Res r) override

{
queue.push_back(std: :move(r)); // push the captured resumption on the queue
queue.push_back({std::bind(Run, f.proc)}); // lift a function to resumption

}

void ReturnClause() override { }

};

The scheduler maintains a queue of lightweight threads represented as resumptions. Execution is
initiated by the static start method, which is passed a computation as a function argument. The
Run method forks off a new thread. The scheduling loop executes each thread in the queue in turn.
The interesting control flow is provided by the command clauses. The Yield clause simply pushes
the current resumption onto the queue, causing control to return to the scheduling loop. The Fork
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clause again pushes the current resumption onto the queue, but then also places the new forked
thread onto the queue too.

In functional programming languages with tail-call optimisation and effect handlers, one typically
specifies this example using tail-recursion. But here we see that it works perfectly well using a
loop instead. One message we would like to convey is that though effect handlers do require a way
of capturing resumptions, they do not depend on functional programming and work perfectly well
when programming in a primarily imperative style.

We can run the scheduler as follows.
int main()

{
Scheduler: :Start(starter);

3
This will print out 01021032104321043210432104321043210432104321432434.

2.3 Actors

One of the key strengths of effect handlers is that they are composable. We now show how to
compose our state and lightweight thread handlers in order to implement message-passing actors
similar to those of Erlang [Armstrong et al. 1996]. For simplicity, we here give a fixed implementation
of actors, but in Section 2.5 we observe that we can treat actors themselves as an effect whose
implementation can itself be given by a handler (or indeed different handlers corresponding to
different implementation strategies).

Following Erlang, we refer to actors as processes. Each process has its own mailbox. Any process
can send messages to the mailbox of any other process, but only the owner of a mailbox can read
messages from it. We begin by representing a process id as a pointer to a queue of messages.

using Pid = std::shared_ptr<std::queue<std::any>>;

We use the std: :any type, because mailboxes are heterogeneous, which means that messages can be
of different types.
The actor interface is given by the following four functions.

Pid spawn(std::function<void()> body); // spawn a new process and return its process id
Pid self(); // return the process id of the current process
template <typename T> void send(Pid p, T msg) // send msg to p

template <typename T> T receive(); // receive a message

Here is a simple ping-pong example that uses the interface to spawn a process. The main process
then sends a sequence of messages to the child process which just sends the messages back again.

void pong()
{
while (true) {
auto [pid, n] =

if (n == 0) { return; }
send<int>(pid, n);
}
}
void ping()
{

auto pongPid = spawn(pong);
for (int i = 1; i <= 10; i++) {

receive<std::tuple<Pid, int>>();

send<std: :tuple<Pid, int>>(pongPid, {self(), i});
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std::cout << receive<int>() << std::endl;

}
send<std: :tuple<Pid, int>>(pongPid, {self(), 0});

3

Now we give the implementation of the actor interface, which uses the effects defined in previous
sections: state and threads.

Pid spawn(std::function<void()> body)
{

auto mailbox = std::make_shared<std::queue<std::any>>();

fork([=10) {

OneShot: :Handle<Stateful<void, Pid>>(body, mailbox);
DN
return mailbox;

3

Pid self()

{
return get<Pid>();

3

template <typename T>

void send(Pid p, T msg)

{
p->push(msg);

}

template <typename T>

T receive()

{
auto mailbox = get<Pid>();
while (mailbox->empty()) { yield(); 3}
auto msg = mailbox->front();
mailbox->pop();
return std::any_cast<T>(msg);

}

The spawn function makes use of the Fork command to implement the new process as a lightweight
thread. It also uses the Stateful handler to manage the mailbox in the body of the process. The
self and receive functions access the mailbox using the et command. (It turns out that for this
example we only really need a read-only state effect — we don’t use Put — as the mailbox itself is
accessed through a further indirection.) We make use of templates and std: :any_cast in order to
support different message types. If we try to receive a message when the mailbox is empty, then
the current process will yield until the mailbox is no longer empty.

We can now run our ping example using the Scheduler handler for lightweight threads, with the
stateful handler used internally.

int main()

{
Scheduler::Start(std: :bind(spawn, ping));

}

This outputs the sequence of integers as expected.
A notable aspect of our implementation is that the state is bound dynamically as a result of being
implemented using handlers. Whenever we call receive or self, we dynamically bind to the state, so
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we do not have to carry any information about the current process id around, and the body of the
actor looks natural, even if it uses features such as recursion or higher-order functions. Crucially,
we could not use a global variable to maintain the state, because the state is not global, but rather
local to a process.

2.4 Ergonomics

Sometimes the full power of effect handlers is overkill. For instance, in the stateful handler we
always invoke the resumption argument in tail position at the end of each command clause.
Moreover, the return clause just returns the value it is passed. It is possible to avoid writing some
of this boilerplate. Here is a more ergonomic version of Stateful.

template <typename Answer, typename S>
class Stateful : public FlatHandler<Answer, Plain<Put<S$>>, Plain<Get<S>>> {
public:

Stateful(S initialState) : state(initialState) { }

private:
S state;
void CommandClause(Put<S> p) final override
{
state = p.newState;
}
S CommandClause(Get<S>) final override
{
return state;
3
b

The FlatHandler class automatically inserts an identity return clause — hence it only takes a single
Answer template argument before the commands. Flat handlers make it easier to define handlers
that are truly parametric in the final result type. The problem is due to the C++ template system.
For example, in our original definition of the Stateful handler, it is not possible to instantiate Answer
with void, as it is used as the argument type of the Returnclause method.

The clause modifier Plain in the type arguments of Handler indicates that a command is a plain
command, meaning that the resumption given as the argument of commandClause must be invoked
in tail position at the end of the command clause (we say that it is tail- and self-resumptive). As a
consequence there is no need to expose the resumption at all to the programmer. The corresponding
CommandClause no longer includes a resumption argument, and the return type is now that of the
command instead of the final return type of the handler. As well as improving readability, plain
commands also improve performance as there is no need to perform any kind of context switch. So
where possible, it is worth marking a command as plain.

Plain clauses are not to be confused with two ways in which we can resume: Resume (used in the
handler for threads) and TailResume (used in the handler for state in Section 2.1). The reason for
the latter is the lack of general tail-call optimisation in C++. If we used return std: :move(r).Resume()
in the state handler, the commandClause frames created when we invoke a command would stay on
the call stack until the very end of the handled computation. Since we need to be able to perform
any number of commands in a computation, TailResume allows us to avoid stack overflow. It can be
used for any resumption as the last handler-related statement in a command clause (or a function
called by a command clause), and it can be used to replace the top-most CommandClause call-frame
with the resumed computation. However, from a code-engineering perspective, if the tail-resumed
resumption is the one we get as an argument, it makes more sense to use the Plain modifier, while if
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the effect juggles a number of resumptions, it is, in our experience, more convenient to trampoline
them in a loop as in the lightweight threads example.

The library provides a further clause modifier NorResume. This is used to indicate a command that
never invokes its resumption at all, in other words an exception. As with plain command clauses,
the resumption argument is omitted from a NoResume command clause. For instance, we might want
to extend the lightweight threading interface to support a command to kill the current thread.

struct Kill : Command<void> { };
We could then adapt the Scheduler handler as follows:

class Scheduler : public Handler<void, void, Yield, Fork, NoResume<Kill>> {
void CommandClause(Kill) override { }

3
The main benefit here is clarity. Because of the techniques we use to optimise creation of resump-
tions, the performance benefit is minimal.

2.5 Actors revisited

In Section 2.3, we gave a fixed implementation of actors. Now we decouple that implementation
into an effect interface and a handler, opening up the possibility of easily plugging in alternative
implementations. For instance, we might want to swap out the underlying implementation of
lightweight threads to use a different scheduler, or we may wish to give a completely different
implementation that does not factor through the lightweight threads implementation at all.

The commands and wrapper functions are as follows.

using Pid = std::shared_ptr<std::queue<std::any>>;

struct Spawn : Command<void> {
std: : function<void()> body;

3

struct Self : Command<Pid> { };

struct Send : Command<void> {
Pid p;
std::any msg;
b
struct Receive : Command<std::any> { };

Pid spawn(std::function<void()> body)
{

return OneShot: : InvokeCmd(Spawn({}, body));
}

Pid self()
{

return OneShot::InvokeCmd(Self{});
}

template <typename T>
void send(Pid p, T msg)
{
OneShot: : InvokeCmd(Send({}, p, msg));
}
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template <typename T>
T receive()

{
return std::any_cast<T>(OneShot::InvokeCmd(Receive{}));

}

The commands themselves make use of std: : any, but the wrapper functions for sending and receiving
are template functions and in particular, the receive wrapper performs the type cast.
Now we can move the actual implementation of the commands into a handler.

template <typename Answer>
class Act : public FlatHandler<Answer, Plain<Spawn>, Plain<Self>, Plain<Send>, Plain<Receive>> {
Pid CommandClause(Self) override

{

return get<Pid>();

}

Pid CommandClause(Spawn s) override

{
auto mailbox = std::make_shared<std::queue<std::any>>();
fork([=10 {
OneShot: :Handle<Stateful<void, Pid>>(s.body, mailbox);
»;

return mailbox;

3
void CommandClause(Send s) override
{
s.p->push(s.msg);
}
std::any CommandClause(Receive) override
{
auto mailbox = get<Pid>();
while (mailbox->empty()) { yield(); }
auto msg = mailbox->front();
mailbox->pop();
return msg;

}

All of the commands are plain and the handler is a parametric flat handler. Now if we want to
change the implementation, we can just define a different handler to use in place of Act.

This example illustrates a more general problem that we encounter with defining an API for
effect handlers as a library: commands cannot be polymorphic. This is because a polymorphic
command in the form of a template, say

template <typename T> struct Receive<T> { };

would make its corresponding command clauses both virtual and templates, which is illegal in C++.

The solution, which is folklore and applicable in many different scenarios, is to split the command
into the monomorphic “core” and a polymorphic wrapper. This, however, often requires other types
to be factorised in this way. For example, here is a snippet from our implementation of async/await:

struct GenericFuture {
std: :vector<Resumption<void, void>> awaiting;

3
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template <typename T>
class Future : public GenericFuture {
std::optional<T> value;

b

struct Await : Command<void> {
GenericFuturex future;

b

template <typename T>

T await(Future<T>*x future)

{
if (xfuture) { return *(future->value); }
OneShot: : InvokeCmd(Await{{}, future}); // Suspend until the value is ready
return future->Value();

2.6 Generators

Generators provide a convenient interface for producing a stream of results. They can be imple-
mented using effect handlers in such a way that the user only sees the generator interface and
is not exposed to any underlying commands or handlers. Because the type of the handler used
internally is statically known, this provides an opportunity for performance gains.

The interface is given by a single Yield command which yields a value to the caller (not to be
confused with the Yield command used by our earlier lightweight threads examples).

template <typename T>
struct Yield : Command<void> {
T value;
b
Our wrapper function takes an additional 1abel argument. This argument is passed to an overloaded
variant of OneShot : : InvokeCmd. It identifies the handler that will be used to handle the command.

template <typename T>
void yield(int64_t label, T x)

{
OneShot: :StaticInvokeCmd(label, Yield<T>{{}, x});

}

By default, and for all the examples we have seem up to now, the handler is chosen as the
inner-most one that supports the invoked command, which requires dynamically checking runtime
type information (RTTI). By supplying a label, we can reduce the need for such expensive RTTI
checks. By using StaticInvokeCmd we are asserting that we know the exact type of the handler
associated with label and in particular that it handles the Yield command with the correct type.
This is a potentially dangerous assumption, but offers significant performance benefits, and can be
done relatively safely if, as in this case, we encapsulate the command and handler inside a library,
so that the user of the library will never need to interact with either.

We now give an implementation of a handler for generators.
template <typename T>
struct GenState;

template <typename T>
using Result = std::optional<GenState<T>>;
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template <typename T>

struct GenState {
T value;
Resumption<void, Result<T>> resumption;

3

template <typename T>

class GeneratorHandler : public Handler<Result<T>, void, Yield<T>> {
Result<T> CommandClause(Yield<T> y, Resumption<void, Result<T>> r) override

{
return GenState<T>{y.value, std::move(r)};
}
Result<T> ReturnClause() override
{
return {3};
}

3
A generator state comprises a value and a current resumption. The return type of the handler is

Result object, which is an optional generator state.
The more interesting part of the implementation is in a separate Generator class.

template <typename T>
class Generator {
public:
Generator(std: : function<void(std::function<void(T)>)> body)
{
auto label = OneShot::FreshLabel();
result = OneShot: :Handle<GeneratorHandler<T>>(label, [body, label](){
body([1label](T x) { yield<T>(label, x); });
DH
}
Generator() { } // Create a dummy generator that generates nothing
T Value() const
{
if (!result) { throw std::out_of_range("Generator::Value"); }
return result.value().value;
}
bool Next()
{
if ('result) { throw std::out_of_range("Generator::Next"); }
result = std::move(result->resumption).Resume();
return result.has_value();

}
explicit operator bool() const
{
return result.has_value();
}
private:
Result<T> result = {3};

};

The idea is that when a generator is created its body is executed until the first value is yielded.
The constructor takes the body as a higher-order function parameterised by a yield function



14 Dan Ghica, Sam Lindley, Marcos Marofias Bravo, and Maciej Pirog

whose implementation is supplied by the constructor itself. This implementation invokes the Yield
command using a fresh label that identifies the generator handler. (The library maintains a global
counter of labels and the user can create a fresh label using oneshot: :FreshLabel.) This label is also
passed to an overloaded version of oneShot: :Handle in order to associate it with the handler.
Notice that generators are not copyable, as GenState is not copyable, as Resumption is not copyable.
The value method returns the current value and the Next method moves onto the next value
by invoking the resumption, returning true if the stream of values has not been exhausted. The
following example illustrates how to use a generator to output a stream of 100 natural numbers.

int main()
{
Generator<int> naturals([](auto yield) {
int i = 1;
while (true) { yield(i++); 3}
DN

for (int i = @; i < 100; i++) {
std::cout << naturals.Value() << std::endl;
naturals.Next();
3
}

Again notice that this user code makes no reference to any commands or effect handlers.

3 IMPLEMENTATION

In this section, we give an overview of the implementation, and detail a few aspects specific to our
setting. In general, our approach is based on a stack of handlers, similar to how effect handlers
are implemented, for example, in Multicore OCaml [Sivaramakrishnan et al. 2021]. We discuss the
inheritance structure of the Handler class, and memory management of handlers and resumptions.

3.1 Metastack (the stack of handlers)

We begin by explaining the semantics of effect handlers via manipulation of the call stack, and
show how an optimised version of this semantics can directly inform the implementation. Since
handlers are a form of generalised resumable exceptions, we first draw a parallel between effect
handlers and exception handlers.

The familiar semantics (but not necessarily implementation) of exceptions can be described
as follows. The try comp catch(const E& e) catchClause statement pushes a handler frame (which,
broadly speaking, corresponds to catch(const E& e) catchClause) on the stack, and proceeds with
comp. The throw e statement, assuming e is of type E, unwinds the stack until it finds a frame of the
shape that corresponds to some catch(const E& f) catchClause, and then continues with catchClause
with the value e bound to the reference f. Figure 1 depicts the process of throwing an exception.

In the case of handlers, the function Oneshot: :Handle<H>(f) pushes a new frame, which corresponds
to a new object of type H, and proceeds with f(). A call to OneShot: : InvokeCmd<Cmd>(c) finds the first
frame on the stack that corresponds to a handler that can interpret cmd, and then continues with its
CommandClause(Cmd, Resumption<...>), which gets as its arguments the value c and a new resumption
that stores the stack segment above and including the handler frame. Importantly, we do not unwind
the stack. The stack stored in a resumption is unwound only when the resumption is discontinued
(that is, goes out of scope). Figure 2 depicts the invocation of a command.

The stack used in this semantics of effect handlers consists of segments of regular call frames,
separated by handler frames. In practice, we can keep each segment of the stack (a stacklet) in
a separate chunk of memory, and use a metastack: a stack of handlers, each with a pointer to
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Fig. 1. Unwinding the call-stack on throwing an exception
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Fig. 3. Different representations of stack

the segment of regular frames above. It is useful for two reasons. First, it is faster to search the
metastack for the right handler, as we do not have to go through every frame on the stack. Second,
we don’t have to physically move the memory that contains regular frames when we create or
resume a resumption, we only manipulate pointers to stacklets.

3.2 Commands and handlers

The informal semantics given above is the basis of the implementation of the library. It does not
require any additional support from the compiler, since the metastack is simply a global data
structure (a linked list of pointers to handler objects), while the boost. context library provides
the mechanism for stacklet allocation and switching.
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There are three main class templates in the library: command, Handler, and Resumption. The Command
template, used as a parent class for user-defined commands, does not have any functionality of its
own. It is just a wrapper around the type of the template’s argument:

template <typename Out>
struct Command {

using OutType = Out;
Y

Handlers are defined via multiple inheritance to provide functionality that allows them to serve as
frames on the metastack and provide interpretations to commands. First, every handler inherits from
the Metaframe class, which groups a pointer to the stacklet (a fiber in boost. context’s terminology)
and a label that can be used to select a handler.

class Metaframe {
boost::context::fiber fiber;
int64_t label;

3
For each command listed in the template arguments pack, Handler inherits from the cmdClause

class. It provides the virtual member function CommandClause that particular implementations of
handlers need to override.

template <typename Answer, typename Cmd>
class CmdClause {
protected:
virtual Answer CommandClause(Cmd, Resumption<typename Cmd::OutType, Answer>) = 0;

3

Then, the handler is defined as:
template <typename Answer, typename Body, typename... Cmds>
class Handler : public Metaframe, public CmdClause<Answer, Cmds>... {

using CmdClause<Answer, Cmds>::CommandClause...;
protected:
virtual Answer ReturnClause(Body b) = 0;

1

Note that the using declaration in the definition of Handler exposes CommandClause from every cmdClause
base, in a sense combining them together into one overloaded function.

The metastack is a list of pointers to objects of the common superclass of all handlers, Metaframe.
This allows us, for example, to access the label of a handler on the metastack without knowing its
actual type. Note that Handler is a template, so it would be cumbersome, if not impossible, to make
the metastack a list of (well-typed pointers to) Handler objects.

std::list<std::shared_ptr<Metaframe>> Metastack;

The fact that the metastack is implemented as a linked list means that we can easily move parts of
the metastack to resumptions when invoking a command (as in Figure 2) and back when resuming.
Alternatively, we could use a vector, which provides faster handler lookup, but requires allocation
every time we create a resumption. In practice, a metastack usually contains no more than a handful
of frames, and our experiments suggest that performance of the two possible implementations is
similar. We detail why we need reference-counting shared pointers in Section 3.5.
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Fig. 4. Inheritance diagram for handlers

The call to oneShot: :Handle<H>(comp) first creates a new object of class H together with a stack,
pushes a pointer to it on the metastack, and on the new stack calls a function that first calls comp(),
and then uses its result to call the ReturnClause of the handler.

3.3 Invoking and handling a command

When the user invokes a command, we look for the right Metaframe on the metastack, down-cast
from Metaframe to Handler, create the resumption, switch to the stacklet below the handler, and
call commandClause with the command and the resumption as its arguments. However, if we try to
implement this scenario, we encounter a problem, which stems from the fact that we have to deal
with value types in C++: in general, we cannot know the type of the handler, so we cannot simply
down-cast to it. We cannot even do a sideways cast from Metaframe to CmdClause<Answer, Cmd> of the
command, because in general we cannot know the Answer template parameter of cmdClause when
invoking the command.

Fortunately, we never need to provide a value of the type Answer to implement the invocation.
The code that is responsible for creating the resumption, switching stacks, and calling the virtual
function commandClause can be provided by the class cmdClause<Answer, Cmd> as an implementation of
an interface that does not depend on the Answer type. In particular, the class cmdClause is defined as
follows (the complete diagram of inheritance for a user-defined handler is shown in Figure 4).

template <typename Cmd>
class CanInvokeCmdClause {
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protected:
virtual typename Cmd::OutType InvokeCmd(std::list<MetaframePtr>::reverse_iterator, const Cmd&)
= 0;
b
template <typename Answer, typename Cmd>
class CmdClause : public CanInvokeCmdClause<Cmd> {
virtual typename Cmd::OutType InvokeCmd(std::list<MetaframePtr>::reverse_iterator, const Cmd&)
final override;
protected:
virtual Answer CommandClause(Cmd, Resumption<typename Cmd::OutType, Answer>) = 0;

Y
Thus, the process of invoking a command is as follows.

(1) The user calls oneshot: : InvokeCmd<Cmd>, which is responsible for finding the right handler on
the metastack. Depending on the overload, it does so using runtime type information (the
first handler for which the dynamic cast to canInvokeCmdClause<cmd> succeeds) or the handler’s
label (in which case we use the dynamic cast only on the first handler with the given label). In
Figure 4, this cast from Metaframe to CanInvokeCmdClause<Cmd1> is indicated by the dashed arrow.
The user can also call oneShot: : StaticInvokeCmd<H, Cmd>, in which case we find the handler by
the label, and statically cast it to H.

(2) The function oneShot: : (Static)InvokeCmd calls the found CanInvokeCmdClause<Cmd>’s InvokeCmd
function, providing it with the command and the metaframe below the found handler, since
the found handler’s command clause is run on the stacklet of the previous handler (see
Figure 2). We create the resumption by moving the top segment of the metastack, switch the
stack, and run the result’s commandClause. If the stack is ever switched back to this place, we
return the value with which the resumption was resumed.

The virtual function call to CanInvokeCmdClause<Cmd>: : InvokeCmd (implemented in CmdClause<Answer,
cmd>) solves the problem of the unknown Answer type of the handler, but it is also useful for implement-
ing the optimisations provided by clause modifiers. Each clause modifier is implemented as a special-
isation of cmdclause. For example, the implementation of InvokeCmd in CmdClause<Answer, Plain<Cmd>>
simply does not create a resumption, and does not switch stacks, but only calls CommandClause,
(temporarily removing the top segment of the metastack in case commandClause itself uses effects).

3.4 Resumptions

Resumptions are implemented as smart pointers to the ResumptionData class, which stores a segment
of the metastack and some additional members used for transferring data when resuming (which
we omit in this description).

template <typename Out, typename Answer>

class ResumptionData {
std::list<MetaframePtr> storedMetastack;

3

template <typename Out, typename Answer>
class Resumption {
ResumptionData<Out, Answer>* data;

3
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When the user invokes a command, the computation is suspended, a resumption is created
by moving an appropriate segment of the metastack to ResumptionData: : storedMetastack, and the
appropriate command clause of a handler is called. In our design goals, we assumed that this process
should be as fast as possible. As allocation is relatively expensive, we want to avoid allocating a
new resumption ResumptionData object every time a command is called, and deleting it when it is
resumed or goes out of scope.

Fortunately, we observe that since our resumptions are one-shot, the user cannot copy them,
and so there can exist at most one resumption per suspended computation at a given time. Hence,
we can pre-allocate all resumptions that will ever be needed for a particular handler object: one
for each supported command. Hence, all ResumptionData objects can be kept as data members of the
Handler class. In particular, each cmdClause<Answer, Cmd> base provides a “buffer” for a resumption
that “hangs” on cmd:

template <typename Answer, typename Cmd>
class CmdClause : public CanInvokeCmdClause<Cmd> {
ResumptionData<typename Cmd::OutType, Answer> resumptionBuffer;

3

A local Resumption object is created as a pointer to the resumptionBuffer and given as argument to
the command clause, which leads to an interesting circular dependency. A resumption contains
a stored metastack (as a list, so via pointers), first metaframe of which is a pointer to a handler,
which contains, as its member, the resumption. This cycle is problematic when a resumption goes
out of scope, as its destructor needs to break this cycle first, which means that it is not enough to
use std: :unique_ptr to implement the Resumption class.

3.5 Lifetime of handlers

Prior implementations of effect handlers in object-oriented settings take advantage of automatic
memory management: the object representing a handler is created when calling the equivalent of
OneShot: :Handle, and is deleted automatically by the garbage collector. In C++, there is no default
garbage collector, and our library manages its own memory, relieving the user from deleting
handlers manually.

When should a handler be deleted? One obvious guess would be: when it is popped from the
metastack (that is, after the return clause returns) or when a resumption that holds a pointer to it
is discontinued (the handlers are one-shot, so there can be only one such resumption). However,
consider the following simple example of an effect that logs messages:

struct Log : Command<void> { std::string msg; };

class Logger : public Handler<std::string, void, Log> {
public:

Logger(std: :string separator) : separator(separator) { }
private:

const std::string separator;

std::string ReturnClause() override

{

return

3

std::string CommandClause(Log 1, Resumption<void, std::string> r) override

{

return 1.msg + this->separator + std::move(r).Resume();
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3

Since the order of evaluation of operator arguments is unspecified in C++, the body of the command
clause for the command Log might very well be treated by the compiler as equivalent to:

auto&& temp = std::move(r).Resume();
return 1.msg + this->separator + temp;

Now observe that std: :move(r).Resume() resumes the entire computation and returns after the return
clause returns. This means that the second line (return 1.msg + ...) happens after the object is
deleted, and so the expression this->separator tries to access a member of a deleted object! This
means that we need to keep the handler alive as long as it is on the metastack (or the metastack
stored in a resumption) or there are live stack frames that can refer to it. Since we have no way to
statically determine where and when such frames might live, we manage the handler’s lifetime
using a shared pointer. It is shared pointers that we actually keep on the metastack, and we create
a copy of the pointer for the duration of each command clause.

Bumping up the counter on each entry to a command clause and running the destructor of a
shared pointer on exit has a performance penalty (over 10% of the time of the invoke-resume cycle
in the generator example). It is especially unfortunate, because in most cases, there is no need for
this, as most examples meet at least one of the following conditions:

(a) The handler does not expose the resumption to the outside. In such a case, we know that
all command clauses are run on top of the oneShot: :Handle frame, and so when the frame
is removed from the stack (either the function returns or the frame is unwound), we can
safely delete the handler, because we know there are no more frames for command clauses
anywhere on the stack or stored metastacks.

(b) The command clauses do not use the internal state of the handler after Resume. In this case, we
can safely delete the handler even if there are still command clauses running on the current
stack or any of the stacklets.

In these cases, the library allows the programmer to avoid paying the performance penalty
needed in the general case. It is possible via another clause modifier, NoManage, that allows the
programmer to trade guaranteed memory-safety for performance. It is used to indicate that at least
one of the conditions above is true, and the command clause need not memory-manage the handler.
A clause that is marked as NoManage will not care to contribute to the reference count of the handler.
If all command clauses in the handler are marked as such, it means that there exist at most two
references to the handler object: the pointer on the metastack, and a local variable in OneShot : :Handle.
If (a) happens, the metastack pointer is removed first, but the handler is kept alive by the pointer in
OneShot: :Handle. If (b) happens, it might be the case that the pointer in OneShot: :Handle is removed
first (for example, when a command clause stores the resumption in a global variable, and returns
an unrelated value), and the handler is deleted after being popped from the metastack, but it will
not cause any problems, as we know that the handled computation has ended (so there will not be
new command clauses called) and all live command clause frames have already called Resume.

4 PERFORMANCE

While our primary goal is to provide a type- and memory-safe, usable programming interface for
effect handlers via just a library — so without any specific optimisations provided by the compiler -
performance is an important issue. As this is, as far as we are aware, the first high-level library for
effect handlers in C++, there are no perfect candidates against which to measure the performance
of our library. Nevertheless, we believe we can still draw some meaningful conclusions about the
feasibility of using our library in programming practice.



High-Level Type-Safe Effect Handlers in C++ 21

25 - 23.18 1 100 || —a— coroutines Ms
20 [ — 80 || —=— cpp-effects N
15| 1 60f / 2
10 - N 40
| | e s e e N N A
3 1.75 20 Véﬁﬁﬁﬂ
I 02
coroutines cpp-effects 11 13 15 17 19 21 23 25
(a) Generating numbers in a loop (b) Recursive tree traversal

Fig. 5. Effect handlers vs native coroutines (lower is better)

First, we compare user-defined effects with those built into the language, such as exceptions
and C++20 coroutines. Built-in effects are optimised for specific tasks, so unsurprisingly their
performance is markedly better than for user-defined effects. However, for features beyond the
scope of those provided by the language (for example, resumable exceptions, or stackful coroutines),
such a comparison can help to assess the performance penalty of the additional expressiveness.

We also compare cpp-effects with 1ibmprompt [Leijen and Sivamarakrishnan 2022] library, an
existing C implementation of effect handlers. Differences in functionality include that 1ibmprompt
does not provide a type-safe high-level interface, features functional-style parameterised handlers
instead of OO-style stateful handlers, and supports for multi-shot resumptions.

4.1 C++20 coroutines

First, we compare generators implemented via effect handlers with coroutines, which were intro-
duced in C++20. The C++ coroutines are stackless, which means that they do not run on a separate
call-stack, but are compiled via program transformation. In particular, they are compiled to objects
with a member function representing the body of the coroutine, and data members representing
local variables. Then, suspending a computation is compiled to returning from the function, and
resuming to jumping to a particular place in the function body.

Such a jumping in and out of the function body can be much faster than stack switching, which
we test on a program that generates consecutive natural numbers in a loop. Then, this generator is
resumed a number times, adding up the generated numbers. The results are shown in Figure 5a,
relative to an implementation that adds numbers using a loop with no concurrency, and indeed
native coroutines are over 10x faster than our implementation using effect handlers.

However, the situation is different if we benchmark programs that cannot be compiled to a
pair of goto-s, for example, when the body of the generator is a recursive function. In the case
of coroutines, every recursive call corresponds to creating a new coroutine, in effect leading to a
heap-allocated stack represented as a linked list of coroutines. Hence, instead of just jumping in
and out of a function, the coroutine-based generator needs to perform a lot of allocations, which
leads to worse performance. We test it on generators that recursively traverse a full binary tree
with values in the leaves. When a generator reaches a leaf, it yields its value. Then, we add up all
the values in a tree repetitively resuming the generator. The results are shown in Figure 5b, with
y-axis showing execution time relative to recursive tree traversal with no concurrency, and x-axis
is the depth of the tree. The version based on effect handlers is faster already for trees of height 6
and more, being at least twice as fast for trees of height 8 and more.
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Fig. 6. Effect handlers vs native exceptions and 1ibmprompt (lower is better)

4.2 Exceptions

Exceptions in idiomatic C++ are used for handling proper errors. This means that most compilers
favour the zero-cost implementation, in which installing an exception handler is cheap, while
handling an exception is allowed to be expensive, since throw is assumed never to be on the hot
path of execution. It is exactly the opposite of the usual scenario for effect handlers, in which we
install an effect handler once (and allow this to be more expensive), and then invoke commands in
large numbers, which should be as cheap as possible.

Nevertheless, it is still interesting to compare native exceptions with exceptions implemented
using effect handlers. In a loop, we run a program that in each iteration installs a handler and throws
an exception. The results are shown in Figure 6a, relative to the native version. As expected, if we
modify the program not to throw the exception, the native version becomes 98% faster (because
installing an exception handler is cheap), while the performance of the effect-based version does
not change in any meaningful way (because invoking a command is cheap).

4.3 The libmprompt library

Finally, we compare with the libmprompt library [Leijen and Sivamarakrishnan 2022] and its
frontend for effect handlers, 1ibmpeff. Both cpp-effects and libmprompt offer a different set of
features; for example, we provide a high-level API, while 1ibmprompt offers multi-shot resumptions.
Interestingly, both implement an optimisation for plain command clauses. We compare the two
libraries on an example that modifies a mutable memory cell in a loop using the state effect.
Figures 6b and 6c show the results relative to modifying the value stored in a variable. The first
benchmark uses handlers implemented using the full power of handlers (as in Section 2.1), while
the second one uses plain command clauses (as in Section 2.4).

5 RELATED WORK

Effect handlers in C. Leijen [2017a] describes how to implement effect handlers in C on top of
setjmp and longjmp, exposing them via a rather low-level interface using C preprocessor macros.
The libhandler library [Leijen 2019] is an implementation of this idea. The implementation has
to be used with some care, but concrete features such as async/await can be implemented in such a
way as to expose a relatively safe interface to the programmer. The 1ibmprompt library [Leijen and
Sivamarakrishnan 2022] is an alternative to the original libhandler library. Instead of implementing
effect handlers directly it implements multiprompt delimited continuations and then a separate
library 1ibmpeff builds effect handlers on top. The libmprompt library uses virtual memory as a
way of allowing stacks to grow without ever having to move them.
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Effect handlers in OO. JEff [Inostroza and van der Storm 2018] is an object-oriented programming
language with support for effect handlers. The Java Effekt library [Brachthauser et al. 2018] is an
implementation of effect handlers for Java. Like libmprompt it builds effect handlers on top of
delimited continuations, which are implemented in Java using a form of CPS translation. The Scala
Effekt library [Brachthauser et al. 2020] is a similar library for Scala, which takes advantage of
Scala’s rich type system to incorporate a full-featured effect type system based on capabilities.

Stack switching in WebAssembly. WebAssembly [Rossberg et al. 2018] is a portable low-level
bytecode for the web supported by all of the main browser vendors. Work is underway to ex-
tend web WebAssembly to support switching between stacks [WebAssembly Community Group
2022] in order to support exactly the kind of features that effect handlers are well-suited for (e.g.
async/await, lightweight threads, and generators). In particular there is a concrete “Typed Con-
tinuations” proposal [Hillerstrom et al. 2022] along with an implementation in the WebAssembly
reference interpreter, which amounts to an extension of WebAssembly with effect handlers. Up to
now WebAssembly has largely been used for compiling C and C++; as such the Typed Continuations
proposal supports an imperative style of effect handling, not dissimilar to cpp-effects, in which
schedulers may be implemented as loops rather than with recursive functions and tail-calls.

Clause modifiers. Clause modifiers for handling commands tail- and self-resumptively (Plain) or
as exceptions (NoResume), have been used previously, for instance in the Racket library associated
with Kammar et al’s early work on libraries for effect handlers [Kammar et al. 2013] and in Koka.

Commands and handlers as objects. The idea of representing commands and handlers as objects
was introduced by Kammar et al. [2013] in their Haskell library for effect handlers. Like us, they
use objects to maintain whatever state is necessary in commands and handlers. However, in their
case, unlike ours, these objects are immutable. Similar ideas arise in later work on designs and
implementations of effect handlers that make use of capability-passing [Brachthiuser et al. 2020;
Zhang and Myers 2019] and evidence-passing [Xie et al. 2020; Xie and Leijen 2021].

6 CONCLUSION

We are not the first to implement effect handlers in an imperative language or the first to implement
effect handlers in an object-oriented programming language. However, as far as we know ours is the
first implementation of effect handlers specifically for C++. This presented a particular challenge
due to the lack of garbage collection in C++. However, we were successfully able to exploit a broad
range of C++ features in order to relatively smoothly integrate effect handlers with C++.

The experience of programming with cpp-effects is an extension of the regular experience
of programming in C++. Commands and handlers are defined as classes, which can be combined
with templates to provide a form of parametric polymorphism in the usual manner. Often a library
can be implemented using effect handlers in such a way that the user of the library need not know
anything at all about effect handlers (as illustrated by our implementation of generators). Though
we have not invested huge effort into trying to optimise cpp-effects, it seems to offer adequate
performance for realistic use-cases, and in some cases it outperforms existing approaches such as
the libmprompt library and C++20 coroutines.

In future we would like to explore plugging in alternative backends with a view to improving
performance. We would also like to explore means for providing some form of effect type system
in order to further tame the complexity of programming in the large with effect handlers. Another
direction which it would be interesting to explore is support for multishot effect handlers. This
would require an alternative implementation mechanism as it would depend on being able to copy
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resumptions, but it opens up a range of other applications such as backtracking and probabilistic
programming.
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