
Equational Theories and Monads from
Polynomial Cayley Representations

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski

University of Wroc law, Poland

Abstract. We generalise Cayley’s theorem for monoids by providing
an explicit formula for a (multi-sorted) equational theory represented
by the type PX → X, where P is an arbitrary polynomial endofunctor
with natural coefficients. From the computational perspective, examples
of effects given by such theories include backtracking nondeterminism
(obtained with the original Cayley representation X → X), finite mutable
state (obtained with n → X, for a constant n), and their different
combinations (via n × X → X or Xn → X). Moreover, we show that
monads induced by such theories are implementable using the type formers
available in programming languages based on a polymorphic λ-calculus,
both as compositions of algebraic datatypes and as continuation-like
monads. We give a set-theoretic model of the latter in terms of Barr-
dinatural transformations. We also introduce CayMon, a tool that takes
a polynomial as an input and generates the corresponding equational
theory together with the two implementations of the induced monad in
Haskell.

1 Introduction

The relationship between universal algebra and monads has been studied at least
since Linton [13] and Eilenberg and Moore [4], while the relationship between
monads and the general theory of computational effects (exceptions, mutable state,
nondeterminism, and such) has been observed by Moggi [14]. By transitivity,
one can study computational effects using concepts from universal algebra,
which is the main theme of Plotkin and Power’s prolific research programme
(see [10,20,21,22,23,24] among many others).

The simplest possible case of this approach is to describe an effect via a
finitary equational theory: a finite set of operations (of finite arities), together
with a finite set of equations. One such example is the theory of monoids:

Operations: γ, ε

Equations: γ(x, ε) = x, γ(ε, x) = x, γ(γ(x, y), z) = γ(x, γ(y, z))

The above reads that the signature of the theory consists of two operations:
binary γ and nullary ε. The equations state that γ is associative, with ε being its
left and right unit.1 One can also read this theory as a specification of backtracking

1 Although one usually writes γ as an infix operation, we use a “functional” syntax,
since, in the following, the arity of corresponding operations may vary.

nondeterminism, in which the order of results matters, where γ is an operation
that creates a new computation as a choice between two subcomputations,
while ε denotes failure. The connection between the equational theory and the
computational effect becomes apparent when we consider the monad of free
monoids (that is, the list monad), which is in fact used to form backtracking
computations in programming; see, for example, Bird’s pearl [1].

This suggests a simple recipe for computational effects: it is enough to come
up with an equational theory, and out of the hat comes the induced monad
of free algebras that implements the corresponding effect. Such an approach
is indeed possible in the category Set, where every finitary equational theory
admits a free monad, constructed by quotienting terms over the signature by
the congruence induced by the equations. However, if we want to implement this
monad in a programming language, the situation is not so simple, since in most
programming languages (in particular, those without higher inductive types)
we cannot generally express this kind of quotients. For instance, to describe a
variant of nondeterminism that does not admit duplicate results, we may extend
the theory of monoids with an equation stating that γ is idempotent, that is,
γ(x, x) = x. But, unlike in the case of general monoids, the monad induced by
the theory of idempotent monoids seems to be no longer directly expressible
in, say, Haskell. This means that there is no implementation that satisfies all
the equations of the theory “on the nose”—one informal argument is that the
representations of γ(x, x) and x should be the same whatever the type of x, and
this would require a decidable equality test on every type, which is not possible.

Thus, both from the practical viewpoint of programming and as a question
on the general nature of equational theories, it makes sense to ask which theories
are “simple” enough to induce monads expressible using only the basic type
formers, such as (co)products, function spaces, algebraic datatypes, universal
and existential quantification. This question seems difficult in general, and to
our knowledge there is little work that addresses it. In this paper, we focus on
a small piece of this problem: we study a certain subset of such implementable
equational theories, and conjure some novel extensions.

The monads that we consider arise from Cayley representations. The overall
idea is that if a theory has an expressible, well-behaved (in a sense that we make
precise in the paper) Cayley representation, the induced monad also has an ex-
pressible implementation. The well-known Cayley theorem for monoids states that
every monoid with a carrier X embeds in the monoid of endofunctions X → X.
In this paper, we generalise this result: given a polynomial Set-endofunctor P
with natural coefficients, we provide an explicit formula for an equational theory
such that its every algebra with a carrier X embeds in a certain algebra with the
carrier given by PX → X. Then, we show that the monad of free algebras of such
a theory can be implemented as a continuation-like monad with the endofunctor
given at a set A as:

∀X.(A→ PX → X)→ PX → X (1)

This type is certainly expressible in programming languages based on polymorphic
λ-calculi, such as Haskell.

However, before we can give the details of this construction, we need to
address some technical issues. It is easy to notice that there may be more than
one “Cayley representation” of a given theory: for example, a monoid X embeds

not only in X → X, but also in a “smaller” monoid X
γ
 X, by which we mean

the monoid of functions of the type X → X of the shape a 7→ γ(b, a), where
b ∈ X. The same monoid X embeds also in a “bigger” monoid X2 → X, in which
we interpret the operations as γ(f, g) = (x, y) 7→ f(g(x, y), y) and ε = (x, y) 7→ x.
What makes X → X special is that instantiating (1) with PX = X gives a
monad that is isomorphic to the list monad (note that in this case, the type (1)
is simply the Church representation of lists). At the same time, we cannot use

X
γ
 X instead of X → X, since (1) quantifies over sets, and thus there is no

natural candidate for γ. Moreover, even though we may use the instantiation
PX = X2, this choice yields a different monad (which we describe in more
detail in Section 5.4). To sort this out, in Section 2, we introduce the notion of
tight Cayley representation. This notion gives rise to the monad of the following
shape, which is a strict generalisation of (1), where R is a Set-bifunctor of mixed
variance:

∀X.(A→ R(X,X))→ R(X,X) (2)

Formally, all our constructions are set-theoretic—to focus the presentation,
the connection with programming languages and type theory is left implicit.
Thus, the second issue that we discuss in Section 2 is the meaning of the universal
quantifier ∀ in (1). It is known [27] that polymorphic functions of this shape
enjoy a form of dinaturality proposed by Michael Barr (see Paré and Román [16]),
called by Mulry strong dinaturality [15]. We model the universally quantified
types above as collections of Barr-dinatural transformations, and prove that if R
is a tight representation, the collection (2) is always a set.

In Section 4, we give the formula that defines an equational theory given a
polynomial functor P . In general, the theories we construct can be multi-sorted,
which is useful for avoiding a combinatory explosion of the induced theories,
hence a brief discussion of such theories in Section 3. We show that PX → X
is indeed a tight representation of the generated theory. Then, in Section 5, we
study a number of examples in order to discover what effects are denoted by the
generated theories. It turns out that each theory can be seen as a (rather complex,
for nontrivial polynomial functors) composition of backtracking nondeterminism
and finite mutable state. Moreover, in Section 6, we show that the corresponding
monads can be implemented not only as continuation-like monads (1), but also
in “direct style”, using algebraic datatypes.

Since they are parametrised by a polynomial, both the equational theory and
its representation consist of many indexed components, so it is not necessarily
trivial to get much intuition simply by looking at the formulas. To facilitate
this, we have implemented a tool, called CayMon, that generates the theory
from a given polynomial, and produces two implementations in Haskell: as
a composition of algebraic datatypes and as a continuation-like (“Cayley”)
monad (1). The tool can be run in a web browser, and is available at http:

//pl-uwr.bitbucket.io/caymon.

http://pl-uwr.bitbucket.io/caymon
http://pl-uwr.bitbucket.io/caymon

2 Tight Cayley Representations

In this section, we take a more abstract view on the concept of “Cayley represen-
tation”. In the literature (for example, [2,5,17,25]), authors usually define Cayley
representations of different forms of algebraic structures in terms of embeddings.
This means that given an object X, there is a homomorphism σ : X → Y to a
different object Y , and moreover σ has a retraction (not necessarily a homomor-
phism) ρ : Y → X (meaning ρ · σ = id). One important fact, which is usually left
implicit, is that the construction of Y from X is in some sense functorial. Since
we are interested in coming up with representations for many different equational
theories, we first identify sufficient properties of such a representation needed
to carry out the construction of the monad (2) sketched in the introduction. In
particular, we introduce the notion of tight Cayley representation, which char-
acterises the functoriality and naturality conditions for the components of the
representation.

As for notation, we use A→ B to denote both the type of a morphism in a
category, and the set of all functions from A to B (the exponential object in Set).
Also, for brevity, we write the application of a bifunctor to two arguments, e.g.,
G(X,Y), without parentheses, as GXY . We begin with the following definition:

Definition 1 (see [16]). Let C ,D be categories, and G,H : C op × C → D be
functors. Then, a collection of D-morphisms θX : GXX → HXX indexed by
C -objects is called a Barr-dinatural transformation if it is the case that for all
objects A in D , objects X, Y in C , morphisms f1 : A→ GXX, f2 : A→ GY Y
in D , and a morphism g : X → Y in C ,

if A

GXX

GY Y

GXY

f1

f2

GXg

GgY

commutes, then A

GXX

GY Y

HXX

HY Y

HXY

f1

f2

θX

θY

HXg

HgY

commutes.

An important property of Barr-dinaturality is that the component-wise com-
position gives a well-behaved notion of vertical composition of two such trans-
formations. The connection between Barr-dinatural transformations and Cayley
representations is suggested by the fact, shown by Paré and Román [16], that
the collection of such transformations of type H → H for the Set-bifunctor
H(X,Y) = X → Y is isomorphic to the set of natural numbers. The latter,
equipped with addition and zero (or the former with composition and the identity
transformation, respectively), is simply the free monoid with a single generator,
that is, an instance of (1) with PX = X and A = 1.

For the remainder of this section, assume that T is a category, while F :
Set → T is a functor with a right adjoint U : T → Set. Intuitively, T is a
category of algebras of some theory, and U is the forgetful functor. Then, the
monad generated by the theory is given by the composition UF . For a function

f : A → UX, we write f̂ = Uf ′ : UFA → UX, where f ′ : FA → X is the
contraposition of f via the adjunction (intuitively, the unique homomorphism
induced by the freeness of the algebra FA).

Definition 2. A tight Cayley representation of T with respect to F a U consists
of the following components:

(a) A bifunctor R : Setop × Set→ Set,
(b) For each set X, an object RX in T , such that URX = RXX,
(c) For all sets A, X, Y and functions f1 : A → RXX, f2 : A → RY Y ,

g : X → Y , it is the case that

if A

RXX

RY Y

RXY

f1

f2

RXg

RgY

commutes, then UFA

RXX

RY Y

RXY

f̂1

f̂2

RXg

RgY

commutes.

(d) For each object M in T , a morphism σM : M → R(UM) in T , such that
UσM : UM → R(UM)(UM) is Barr-dinatural in M ,

(e) A Barr-dinatural transformation ρM : R(UM)(UM) → UM , such that
ρM · UσM = id,

(f) For each set X, a set of indices IX and a family of functions runX,i : RXX →
X, where i ∈ IX , such that R(RXX)runX is a jointly monic family, and the
following diagram commutes for all X and i ∈ IX :

RXX R(RXX)(RXX)

R(RXX)X

UσRX

R(RXX)runX,i
RrunX,iX

Note that the condition (c) states that the objects R are, in a sense, natural.
Intuitively, understanding an object RX as an algebra, the condition states
that the algebraic structure of RX does not really depend on the set X. The
condition (f) may seem rather complicated: the intuition behind the technical
formulation is that RXY behaves like a form of a function space (after all, we
are interested in abstract Cayley representations), and runX,i is an application
to an argument specified by i, as in the example below. In such a case, the joint
monicity becomes the extensional equality of functions.

Example 3. Let us check how Cayley representation for monoids fits the definition
above: (a) The bifunctor is RXY = X → Y . (b) The T -object for a monoid M
is the monoid M → M with γ(f, g) = f ◦ g and ε = id. (c) Given some
elements a, b, . . . , c ∈ A, we need to see that g ◦ f1(a) ◦ f1(b) ◦ · · · ◦ f1(c) =
f2(a)◦f2(b)◦· · ·◦f2(c)◦g. Fortunately, the assumption, which in this case becomes

g ◦ f1(a) = f2(a) ◦ g for all a ∈ A, allows us to “commute” g from one side of the
chain of function compositions to the other. (d) σM (a) = b 7→ γ(a, b). It is easy
to verify that it is a homomorphism. The Barr-dinaturality condition: assuming
f(m) = n for some m ∈ M and n ∈ N , and a homomorphism f : M → N , it
is the case that, omitting the U functor, RfN(σN (n)) = RfN(σN (f(m))) =
b 7→ γ(f(m), f(b)) = b 7→ f(γ(m, b)) = RMf(σM (m)), where the equalities can
be explained respectively as: assumption in the definition of Barr-dinaturality,
unfolding definitions, homomorphism, unfolding definitions. (e) ρM (f) = f(ε).
It is easy to show that it is Barr-dinatural; note that we need to use the fact
that T -morphisms (that is, monoid homomorphisms) preserve ε. (f) We define
IX = X, while runX,i(f) = f(i).

The first main result of this paper states that given a tight representation
of T with respect to F a U , the monad given by the composition UF can be
alternatively defined using a continuation-like monad constructed with sets of
Barr-dinatural transformations:

Theorem 4. For a tight Cayley representation R with respect to F a U , elements
of the set UFA are in 1-1 correspondence with Barr-dinatural transformations of
the type (A→ RXX)→ RXX. In particular, this means that the latter form a set.
Moreover, this correspondence gives a monad isomorphism between UF and the
evident continuation-like structure on (2), given by the unit (ηA(a))X(f) = f(a)
and the Kleisli extension (f∗(k))X(g) = kX(a 7→ (f(a))X(g)).

We denote the set of all Barr-dinatural transformations from the bifunctor
(X,Y) 7→ A→ RXY to R as ∀X.(A→ RXX)→ RXX. This gives us a monad
similar in shape to the continuation monad, or, more generally, Kock’s codensity
monad [12] embodied using the formula for right Kan extensions as ends. One
important difference with the codensity monad (except, of course, the fact that we
have bifunctors on the right-hand sides of arrows) is that we use Barr-dinatural
transformations instead of the usual dinatural transformations [3]. Indeed, if we
use ends instead of ∀, the end

∫
X

(A→ RXX)→ RXX is given as the collection
of all dinatural transformations of the given shape. It is known, however, that
even in the simple case when A = 1 and RXY = X → Y , this collection is too
big to be a set (see the discussion in [16]), hence such end does not exist.

3 Multi-sorted Equational Theories with a Main Sort

The equational theories that we generate in Section 4 are multi-sorted, which is
useful for trimming down the combinatorial complexity of the result. This turns
out to be, in our view, essential in understanding what computational effects
they actually represent. In this section, we give a quick overview of what kind
of equational theories we work with, and discuss the construction of their free
algebras.

We need to discuss the free algebras here, since we want the freeness to be
with respect to a forgetful functor to Set, rather than to the usual category of

sorted sets; compare [26]. This is because we want the equational theories to
generate monads on Set, as described in the previous section. In particular, we
are interested in theories in which one of the sorts is chosen as the main one, and
work with the functor that forgets not only the structure, but also the carriers of
all the other sorts, only preserving the main one. Luckily, this functor can be
factored as a composition of two forgetful functors, each with an obvious left
adjoint.

In detail, assume a finite set of sorts S = {Ω,K1, . . . ,Kd} for some d ∈ N,
where Ω is the main sort. The category of sorted sets is simply the category
Set|S|, where |S| is the discrete category generated by the set S. More explicitly,

the objects of Set|S| are tuples of sets (one for each sort), while morphisms are
tuples of functions. Given an S-sorted finitary theory T, we denote the category
of its algebras as T-Alg. To see that the forgetful functor from T-Alg to Set has
a left adjoint, consider the following composition of adjunctions:

Set Set|S| T-Alg

X 7→ (X, ∅, . . . , ∅)

(X,A1, . . . , Ad) 7→ X

free

carriers

This means that the free algebra for each sort has the carrier given by the set of
terms of the given sort (with variables appearing only at positions intended for
the main sort Ω) quotiented by the congruence induced by the equations. This
kind of composition of adjunctions is similar to [18].

4 Theories from Polynomial Cayley Representations

In this section, we introduce algebraic theories that are tightly Cayley-represented
by PX → X for a polynomial functor P . Notation-wise, whenever we write i ≤ k
for a fixed k ∈ N, we mean that i is a natural number in the range 1, . . . , k,
and use [xi]i≤k to denote a sequence x1, . . . , xk. The latter notation is used
also in arguments of functions and operations, so f([xi]i≤k) means f(x1, . . . , xk),
while f(x, [yi]i≤k) means f(x, y1, . . . , yk). We sometimes use double indexing; for

example, by
∏k
i=1

∏ti
j=1Xi,j → Y for some [ti]i≤k, we mean the type X1,1×· · ·×

X1,t1×· · ·×Xk,1×· · ·×Xk,tk → Y . This is matched by a double-nested notation

in arguments, that is, f([[xji]j≤ti]i≤k) means f(x11, . . . , x
t1
1 , . . . , x

1
k, . . . , x

tk
k). Also,

whenever we want to repeat an argument k-times, we write [x]k; for example,
f([x]3) means f(x, x, x). Because we use a lot of sub- and superscripts as indices,
we do not use the usual notation for exponentiation. This means that xi always
denotes some x at index i, while a k-fold product of some type X, ordinarily
denoted Xk, is written as

∏k
X. We use the J-K brackets to denote the interpre-

tation of sorts and operations in an algebra (that is, a model of the theory). If
the algebra is clear from the context, we skip the brackets in the interpretation
of operations.

For the rest of the paper, let d ∈ N (the number of monomials in the
polynomial) and sequences of natural numbers [ci]i≤d and [ei]i≤d (the coeffcients

and exponents respectively) define the following polynomial endofunctor on Set:

PX =

d∑
i=1

ci ×
∏ei X, (3)

where ci is an overloaded notation for the set {1, . . . , ci}. With this data, we
define the following equational theory:

Definition 5. Assuming d, [ci]i≤d, and [ei]i≤d as above, we define the following
equational theory T:

– Sorts:

Ω (main sort)

Ki, for all i ≤ d

– Operations:

cons :
∏d
i=1

∏ci Ki → Ω

πji : Ω → Ki, for i ≤ d and j ≤ ci
εji : Ki, for i ≤ d and j ≤ ei
γji : Kj ×

∏ej Ki → Ki, for i, j ≤ d

– Equations:

πji (cons([[x
j
i]j≤ci]i≤d)) = xji (beta-π)

cons([[πji (x)]j≤ci]i≤d) = x (eta-π)

γji (ε
k
j , [xt]t≤ej) = xk (beta-ε)

γii(x, [ε
j
i]j≤ei) = x (eta-ε)

γji (γ
k
j (x, [yt]t≤ek), [zs]s≤ej) = γki (x, [γji (yt, [zs]s≤ej)]t≤ek) (assoc-γ)

Thus, in the theory T, there is a main sort Ω, which we think of as corre-
sponding to the entire functor, and one sort Ki for each “monomial”

∏ei X.
Then, we can think of Ω as a tuple containing elements of each sort, where each
sort Ki has exactly ci occurrences. The fact that Ω is a tuple, which is witnessed
by the cons and π operations equipped with the standard equations for tupling
and projections, is not too surprising—one should keep in mind that T is a theory
represented by the type PX → X, which can be equivalently given as the product
of function spaces ci ×

∏ei X → X for all i ≤ d.
Each operation γji can be used to compose an element of Kj and ej elements

of Ki to obtain an element of Ki. The ε constants can be seen as selectors:
in (beta-ε), εkj in the first argument of γji selects the k-th argument of the sort Ki,
while the (eta-ε) equation states that composing a value of Ki with the successive
selectors of Ki gives back the original value. The equation (assoc-γ) states that
the composition of values is associative in an appropriate sense. In Section 5, we
provide a reading of the theory T as a specification of a computational effect for
different choices of d, ci, and ei.

Remark 6. If it is the case that ei = ej for some i, j ≤ d, then the sorts Ki

and Kj are isomorphic. This means that in every algebra of such a theory, there
is an isomorphism of sorts ϕ : JKiK→ JKjK, given by ϕ(x) = γij(x, [ε

k
j]k≤ei). This

suggests an alternative setting, in which instead of having a single ci ×
∏ei X

comoponent, we can have ci components of the shape
∏ei X. In such a setting,

the equational theory T in Definition 5 would be slightly simpler—specifically,
there would be no need for double-indexing in the types of cons and π. On
the downside, this would obfuscate the connection with computational effects
described in Section 5 and some conjured extensions in Section 7.

The theory T has a tight Cayley representation using functions from P , as
detailed in the following theorem. This gives us the second main result of this
paper: by Theorem 4, the theory T is the equational theory of the monad (1).
The notation ini means the i-th inclusion of the coproduct in the functor P .

Theorem 7. The equational theory T from Definition 5 is tightly Cayley-represented
by the following data:

– The bifunctor RXY = PX → Y ,
– For a set X, the following algebra:
• Carriers of sorts:

JΩK = RXX

JKiK =
∏ei X → X

• Interpretation of operations:

JconsK([[f jk]j≤ck]k≤d)(ini(c, [xt]t≤ei)) = f ci ([xt]t≤ei)

Jπji K(f)([xt]t≤ei) = f(ini(j, [xt]t≤ei))

Jεji K([xt]t≤ei) = xj

Jγji K(f, [gk]k≤ej)([xt]t≤ei) = f([gk([xt]t≤ei)]k≤ej)

– The homomorphism σM for the main sort and sorts Ki:

σΩM (m)(ini(c, [xt]t≤ei)) = cons([[γik(πci (m), [πjk(xt)]t≤ei)]j≤ck]k≤d)

σiM (s)([xt]t≤ei) = cons([[γik(s, [πjk(xt)]t≤ei)]j≤ck]k≤d)

– The transformation ρM :

ρM (f) = cons([[πjk(f(ink(j, [cons([wfr]r<k, [ε
t
k]ck , [w

f
r]k<r≤d)]t≤ek)))]j≤ck]k≤d)

where wfr = [πcr(f(inr(c, [ε
j
r]j≤er)))]c≤cr

– The set of indices IX = PX and the functions runX,i(f) = f(i).

In the representing algebra, it is the case that each JKiK represents one
monomial, as mentioned in the description of T, while JΩK is the appropriate

tuple of representations of monomials, which is encoded as a single function from
a coproduct (in our opinion, this encoding turns out to be much more readable
on paper), while cons and π are indeed given by tupling and projections. For
each i ≤ d, the function εji simply returns its j-th argument, while γ is interpreted
as the usual composition of multi-argument functions.

Homomorphisms between multi-sorted algebras are defined as operation-
preserving functions for each sort, so σ is defined for the sort Ω and for each
sort Ki. In general, the point of Cayley representations is to encode an element m
of an algebra M using its possible behaviours with other elements of the algebra.
It is no different here: for each sort Ki at the c-th occurrence in the tuple, the
function σΩ packs (using cons) all possible compositions (by means of γ) of values
of Ki with the “components” of m (extracted using π). The same happens for
each s ∈ JKiK in σiM (s), but there is no need to unpack s, as it is already a value
of a single sort.

The transformation ρM is a bit more complicated. The argument f is, in
general, a function from a coproduct to M , but we cannot simply apply f to one
value ini(. . .) for some sort Ki, as we would obviously lose the information about
the components in different sorts. This is why we need to apply f to all possible
sorts with ε in the right place to ensure that we recover the original value. We
extract the information about particular sorts from such values, and combine
them using cons. Interestingly, the elements of wfr could actually be replaced
by any expression of the appropriate sort that is preserved by homomorphisms,
assuming that f is also preserved. This is needed to ensure that ρ is Barr-dinatural
(the fact that f is preserved by homomorphisms is exactly the assumption in the
definition of Barr-dinaturality). For example, if er > 0 for some r ≤ d, one can
define wfr simply as [εjr]cr for some j ≤ er. The complicated expression in the
definition of wfr is a way to produce values also for sorts Kr with er = 0, which
do not have any ε constants.

Remark 8 (on monadicity). If for all i ≤ d, it is the case that ei > 0, then the
composition of right adjoints given in Section 3 is monadic. This means that
Set-models of such a theory are equivalent to algebras of the induced monad. If,
however, there is a sort i with no constants (that is, with ei = 0), the two kinds
of algebras might no longer be equivalent. The difference, however, occurs only
for the empty set of generators of the main sort. In such a case, there is only
one algebra for the monad (it is easy to see that the monad preserves the empty
set), while there could be more models of algebras, as long as the main sort is
interpreted as the empty set.

5 Effects Modeled by Polynomial Representations

Now we describe what kind of computational effects are captured by the theo-
ries introduced in the previous section. It turns out that they all are different
compositions of finite mutable state and backtracking nondeterminism. These
compositions include the two most basic ones: when the state is local for each
nondeterministic branch, and when it is global to the entire computation.

In the following, if there is only one object of a given kind, we skip the indices.
For example, if for some i, it is the case that ei = 1, we write εi instead of ε1i . If
d = 1, we skip the subscripts altogether.

5.1 Backtracking Nondeterminism via Monoids

We recover the original Cayley theorem for monoids instantiating Theorem 7
with PX = X, that is, d = 1 and c1 = e1 = 1. In this case, we obtain two sorts,
Ω and K, while the equations (beta-π) and (eta-π) instantiate respectively as
follows:

π(cons(x)) = x, cons(π(x)) = x

This means that both sorts are isomorphic, so one can think of this theory
as being single-sorted. Of course, this is always the case if d = 1 and c1 = 1.
Since e1 = 1, the operation γ is binary and there is a single ε constant. The
equations (beta-ε) and (eta-ε) say, respectively, that ε is the left and right unit
of γ, that is:

γ(ε, x) = x, γ(x, ε) = x

Interestingly, the two unit laws for monoids are symmetrical, but in general the
(beta-ε) and (eta-ε) equations are not. One should note that the symmetry is
already broken when one implements free monoids (that is, lists) in a programming
language: in the usual right-nested implementation, the “beta” rule is part of the
definition of the append function, while the “eta” rule is a theorem. The (assoc-γ)
equation instantiates as the associativity of γ:

γ(γ(x, y), z) = γ(x, γ(y, z))

5.2 Finite Mutable State

For n ∈ N, if we take PX = n, that is, d = 1, c1 = n and e1 = 0, we obtain
the equational theory of a single mutable cell in which the set of possible states
is {1, . . . , n}. There are two sorts in the theory: Ω and K. The sort K does not
have any interesting structure on its own, as there are no constants ε, and the
equation (eta-ε) instantiates to

γ(x) = x,

which means that γ is necessarily an identity. The fact that this theory is indeed
the theory of state becomes apparent when we identify Ω as a sort of computations
that require some initial state to proceed, and K as computations that produce a
final state. Then, the operations πj : Ω → K (j ≤ n) are the “update” operations,
where πj sets the current state to j, while cons :

∏n
K → Ω is the “lookup”

operation, in which the j-th argument is the computation to be executed if
the current state is j. The equations (beta-π), for all j ≤ n, and (eta-π) state
respectively:

πj(cons([xi]i≤n)) = xj , cons([πi(x)]i≤n) = x

These equations embody the natural behaviour rules for this limited form of state.
The former reads that setting the current state to j and then proceeding with the
computation xi if the current state is i is the same thing as simply proceeding
with xj (note that xj is of the sort K, hence it does not use the information that
the current state has just been updated to j, so there is no need to keep the πj

operation on the right-hand side of the equation). The latter states that if the
current state is i and we set the current state to i, it is the same thing as not
changing the state at all (note that x does not depend on the current state, as it
is the same in every argument of cons).

Interestingly, the presentations of equational theories for state in the literature
(for example, [7,23]) are all single-sorted. Such a setting can be recovered by
defining the following macro-operations on the sort Ω:

putj : Ω → Ω get :
∏n

Ω → Ω

putj(x) = cons([πj(x)]n) get([xi]i≤n) = cons([πi(xi)]i≤n)

The trick here is that the get operation does not change the state (by setting the
new state to the current one), while put does not depend on the current state
(by having the same computation in every argument of cons). The usual four
equations for the interaction of put and get can be obtained by unfolding the
definitions and using the (beta-π) and (eta-π) equations:

putj(putk(x)) = putk(x) putj(get([xi]i≤n)) = putj(xj)

get([get([xi]i≤n)]n) = get([xi]i≤n) get([puti(xi)]i≤n) = get([xi]i≤n)

The connection with the implementation of state in programming becomes
evident when we take a closer look at the endofunctor of the induced monad
from Theorem 4. Consider the following informal calculation:

∀X.(A→ n→ X)→ n→ X
∼= ∀X.n→ (A→ n→ X)→ X (flipping the arguments)
∼= n→ ∀X.(A→ n→ X)→ X (∀ commutes with arrows)
∼= n→ ∀X.(A× n→ X)→ X (Curry)
∼= n→ A× n (Church)

This means that not only do we prove that the equational theory corresponds to
the usual state monad, but we can actually derive the implementation of state
as the endofunctor A 7→ (n→ A× n).

5.3 Backtracking with Local State

We obtain one way to combine nondeterminism with state using the functor
PX = n × X, for n ∈ N, that is, d = 1, c1 = n and e1 = 1. It has two sorts,
Ω and K, which play roles similar to those detailed in the previous section.
However, this time K additionally has the structure of a monoid. This gives

us the theory of backtracking with local state, which means that whenever we
make a choice using the γ operation, the computations in each argument carry
separate, non-interfering states. In particular, in a computation γ(x, y), both
subcomputations x and y start with the same state, which is the initial state of
the entire computation. This non-interference is guaranteed simply by the system
of sorts: the arguments of γ are of the sort K, which means that the stateful
computations inside the arguments begin with π, which sets a new state.

We can also obtain a single-sorted theory, similar to the case of the pure state.
To the put and get macro-operations, we add choice and failure as follows:

choose : Ω ×Ω → Ω fail : Ω

choose(x, y) = cons([γ(πj(x), πj(y))]j≤n) fail = cons([ε]n)

Then, the locality of state can be summarised by the following equality, which is
easy to show using the (beta-π) and (eta-π) equations:

putk(choose(x, y)) = choose(putk(x), putk(y))

5.4 Backtracking with Global State

Another way to compose nondeterminism and state is by using global state, which
is obtained for n ∈ N and PX = Xn, that is, d = 1, c1 = 1, and e1 = n. As in the
case of pure backtracking nondeterminism, it means that the sorts Ω and K are
isomorphic. The intuitive understanding of the expression γ(x, [yi]i≤n) is: first
perform the computation x, and then the computation yi, where i is the final
state of the computation x. The operation εj is: fail, but set the current state
to j. In this case, the equations (beta-ε) instantiate to the following for all j ≤ n:

γ(εj , [yi]i≤n) = yj

It states that if the first computation fails but sets the state to j, the next step
is to try the computation yj . Note that there is no other way to give a new state
than via failure, but this can be circumvented using γ(x, [εk]n) to set the state
to k after performing x. The (eta-ε) instantiates to:

γ(x, [εj]j≤n) = x

This reads that if we execute x and then set the current state to the resulting
state of x, it is the same as just executing x.

6 Direct-Style Implementation

Free algebras of the theory T from Definition 5 can also be presented as terms
of a certain shape. They are best described as terms built using the operations
from T that are well-typed according to the following typing rules, where the

types are called Ω, Ki, and Pi for i ≤ d. The type of the entire term is Ω, and
Var(x) means that x is a variable.

[[tji : Ki]j≤ci]i≤d

cons([[tji]j≤ci]i≤d) : Ω
εji : Ki

t : Pj [wk : Ki]k≤ej

γji (t, [wk]k≤ej) : Ki

Var(x)

πji (x) : Pi

Note that even though variables appear as arguments to the operations π, they
are not of the type Ω. This means that the entire term cannot be a variable, as
it is always constructed with cons as the outermost operation. Each argument
of cons is a term of the type Ki for an appropriate i, which is built out of the
operations ε and γ. Note that the first argument of γ is always a variable wrapped
in π, while all the other arguments are again terms of the type Ki. Overall, such
terms can be captured as the following endofunctors on Set, where W i represents
terms of the type Ki, while WΩ represents terms of the type Ω. By µY.GY we
mean the carrier of the initial algebra of an endofunctor G.

W iX = µY.ei +
∑d
j=1 (

∑ci X)×
∏ej Y

WΩX =
∏d
i=1

∏ciW iX

Clearly, ei in the definition of W i represents the εi constants, while the second
component of the coproduct is a choice between the γi operations with appropriate
arguments.

It is the case that every term of the sort Ω can be normalised to a term of
the type Ω by a term-rewriting system obtained by orienting the “beta” and
“assoc” equations left to right, and eta-expanding variables at the top-level:

πji (cons([[x
j
i]j≤ci]i≤d)) xji

γji (ε
k
j , [xt]t≤ej) xk

γji (γ
k
j (x, [yt]t≤ek), [zs]s≤ej) γki (x, [γji (yt, [zs]s≤ej)]t≤ek)

x cons([[γii(π
j
i (x), [εki]k≤ei)]j≤ci]i≤d)

This term rewriting system gives rise to a natural implementation of the monadic
structure, where the “beta” and “assoc” rules normalise the two-level term
structure, thus implementing the monadic multiplication, while the eta-expansion
rule implements the monadic unit.

7 Discussion

The idea for employing Cayley representations to explore implementations of
monads induced by equational theories is inspired by Hinze [8], who suggested a
connection between codensity monads, Church representation of lists, and the
Cayley theorem for monoids. We note that Hinze’s discussion is informal, but he
suggests using ends, which, as we discuss in Section 2, is not sound.

Most of related work follows one of two main paths: it either concentrates
on algebraic explanation of monads already used in programming and semantics

(for example, [11,19,23]), or on the general connection between different kinds
of algebraic theories and computational effects, but without much interest in
whether it leads to structures implementable in a programming language. Some
exceptions are the construction of the sum of a theory and a free theory [9] or the
sum of ideal monads [6]. What we propose in Section 4 is a form of a “functional
combinatorics”: given a type, what kind of algebra describes the possible values?

As our approach veers off the main paths of the recent work on effects, there
are many possible directions of future work. One interesting direction would be
to generalise Set, the base category used throughout this paper, to more abstract
categories. After all, we want to talk about structures definable only in terms of
(co)products, exponentials, and quantifiers—which are all constructions whose
universal properties are singled out and explored using (co)cartesian (or even
monoidal) closed categories. However, the current development relies heavily on
the particular properties of Set, such as extensional equality of functions, which
appears in disguise in the condition (f) in Definition 2.

One can also try to extend the type used as a Cayley representation. For
example, we could consider the polynomial P in (3) to range over the space of
all sets, that is, allow the coefficients ci to vary over sets rather than natural
numbers. In the Cayley representation, it would be enough to consider functions
from ci in place of ci-fold products. We would immediately gain expressiveness,
as the obtained state monad would no longer need to be defined only for a finite
set of possible states. On the flip side, this would make the resulting theory
infinitary – which, of course, is not uncommon in the field of algebraic treatment
of computational effects. However, we decide to stick to the simplest possible
setting in this paper, which greatly simplifies the presentation, but still gives us
some novel observations, like the fact that the theory of finite state is simply
the theory of 2-sorted tuples in Section 5.2, or the novel theory of backtracking
nondeterminism with global state in Section 5.4. Other future extensions that we
believe are worth exploring include iterating the construction to obtain a from
of a distributive tensor (compare Rivas et al.’s [25] “double” representation of
near-semirings) or quantifying over more variables, leading to less interaction
between sorts.

Acknowledgements

We thank the reviewers for their insightful comments and suggestions.
Maciej Piróg was supported by the National Science Centre,

Poland under POLONEZ 3 grant “Algebraic Effects and Continua-
tions” no. 2016/23/P/ST6/02217. This project has received funding
from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No 665778.

Piotr Polesiuk was supported by the National Science Centre, Poland, under
grant no. 2014/15/B/ST6/00619.

Filip Sieczkowski was supported by the National Science Centre, Poland,
under grant no. 2016/23/D/ST6/01387.

References

1. Bird, R.: Functional pearl: A program to solve Sudoku. Journal of Func-
tional Programming 16(6), 671–679 (Nov 2006), http://dx.doi.org/10.1017/

S0956796806006058

2. Bloom, S.L., Ésik, Z., Manes, E.G.: A Cayley theorem for boolean algebras. Amer-
ican Mathematical Monthly 97(9), 831–833 (Sep 1990), http://dx.doi.org/10.
2307/2324751

3. Dubuc, E., Street, R.: Dinatural transformations. In: MacLane, S., Applegate, H.,
Barr, M., Day, B., Dubuc, E., Phreilambud, Pultr, A., Street, R., Tierney, M.,
Swierczkowski, S. (eds.) Reports of the Midwest Category Seminar IV. pp. 126–137.
Springer Berlin Heidelberg, Berlin, Heidelberg (1970)

4. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9(3),
381–398 (09 1965), https://projecteuclid.org:443/euclid.ijm/1256068141

5. Ésik, Z.: A Cayley theorem for ternary algebras. International Journal of Algebra
and Computation 8, 311–316 (1998)

6. Ghani, N., Uustalu, T.: Coproducts of ideal monads. ITA 38(4), 321–342 (2004),
https://doi.org/10.1051/ita:2004016

7. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19-21, 2011. pp. 2–14. ACM (2011), http://doi.acm.org/10.
1145/2034773.2034777

8. Hinze, R.: Kan extensions for program optimisation or: Art and Dan explain an old
trick. In: Gibbons, J., Nogueira, P. (eds.) Mathematics of Program Construction
- 11th International Conference, MPC 2012, Madrid, Spain, June 25-27, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7342, pp. 324–362. Springer
(2012), https://doi.org/10.1007/978-3-642-31113-0_16

9. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theoret-
ical Computer Science 357(1-3), 70–99 (2006), https://doi.org/10.1016/j.tcs.
2006.03.013

10. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science
172, 437–458 (2007), https://doi.org/10.1016/j.entcs.2007.02.019

11. Jaskelioff, M., Moggi, E.: Monad transformers as monoid transformers. Theoretical
Computer Science 411(51-52), 4441–4466 (2010), https://doi.org/10.1016/j.

tcs.2010.09.011

12. Kock, A.: Continuous Yoneda representation of a small category (1966), http:
//home.math.au.dk/kock/CYRSC.pdf, Aarhus University preprint

13. Linton, F.: Some aspects of equational categories. In: Eilenberg, S., Harrison, D.K.,
MacLane, S., Röhrl, H. (eds.) Proceedings of the Conference on Categorical Algebra.
pp. 84–94. Springer Berlin Heidelberg, Berlin, Heidelberg (1966)

14. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (1991), https://doi.org/10.1016/0890-5401(91)90052-4

15. Mulry, P.S.: Strong monads, algebras and fixed points, p. 202–216. London Mathe-
matical Society Lecture Note Series, Cambridge University Press (1992)

16. Paré, R., Román, L.: Dinatural numbers. Journal of Pure and Applied Algebra
128(1), 33 – 92 (1998), http://www.sciencedirect.com/science/article/pii/
S0022404997000364

http://dx.doi.org/10.1017/S0956796806006058
http://dx.doi.org/10.1017/S0956796806006058
http://dx.doi.org/10.2307/2324751
http://dx.doi.org/10.2307/2324751
https://projecteuclid.org:443/euclid.ijm/1256068141
https://doi.org/10.1051/ita:2004016
http://doi.acm.org/10.1145/2034773.2034777
http://doi.acm.org/10.1145/2034773.2034777
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1016/j.tcs.2010.09.011
https://doi.org/10.1016/j.tcs.2010.09.011
http://home.math.au.dk/kock/CYRSC.pdf
http://home.math.au.dk/kock/CYRSC.pdf
https://doi.org/10.1016/0890-5401(91)90052-4
http://www.sciencedirect.com/science/article/pii/S0022404997000364
http://www.sciencedirect.com/science/article/pii/S0022404997000364

17. Piróg, M.: Eilenberg-Moore monoids and backtracking monad transformers. In:
Atkey, R., Krishnaswami, N.R. (eds.) Proceedings 6th Workshop on Mathematically
Structured Functional Programming, MSFP@ETAPS 2016, Eindhoven, Netherlands,
8th April 2016. EPTCS, vol. 207, pp. 23–56 (2016), https://doi.org/10.4204/
EPTCS.207.2

18. Piróg, M., Schrijvers, T., Wu, N., Jaskelioff, M.: Syntax and semantics for operations
with scopes. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 809–818. LICS ’18, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3209108.3209166

19. Piróg, M., Staton, S.: Backtracking with cut via a distributive law and left-zero
monoids. Journal of Functional Programming 27, e17 (2017), https://doi.org/
10.1017/S0956796817000077

20. Plotkin, G.D.: Adequacy for algebraic effects with state. In: Fiadeiro, J.L., Harman,
N., Roggenbach, M., Rutten, J.J.M.M. (eds.) Algebra and Coalgebra in Computer
Science: First International Conference, CALCO 2005, Swansea, UK, September
3-6, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3629, pp. 51–51.
Springer (2005), https://doi.org/10.1007/11548133_3

21. Plotkin, G.D., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan, M.
(eds.) Foundations of Software Science and Computation Structures, 4th Interna-
tional Conference, FOSSACS 2001, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings. Lecture Notes in Computer Science, vol. 2030, pp. 1–24. Springer
(2001), https://doi.org/10.1007/3-540-45315-6_1

22. Plotkin, G.D., Power, J.: Semantics for algebraic operations. Electronic Notes
in Theoretical Computer Science 45, 332–345 (2001), https://doi.org/10.1016/
S1571-0661(04)80970-8

23. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: Nielsen, M.,
Engberg, U. (eds.) Foundations of Software Science and Computation Structures,
5th International Conference, FOSSACS 2002, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France,
April 8-12, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2303, pp.
342–356. Springer (2002), https://doi.org/10.1007/3-540-45931-6_24

24. Plotkin, G.D., Power, J.: Computational effects and operations: An overview.
Electronic Notes in Theoretical Computer Science 73, 149–163 (2004), http://dx.
doi.org/10.1016/j.entcs.2004.08.008

25. Rivas, E., Jaskelioff, M., Schrijvers, T.: From monoids to near-semirings: The essence
of MonadPlus and Alternative. In: Falaschi, M., Albert, E. (eds.) Proceedings
of the 17th International Symposium on Principles and Practice of Declarative
Programming, Siena, Italy, July 14-16, 2015. pp. 196–207. ACM (2015), http:

//doi.acm.org/10.1145/2790449.2790514

26. Tarlecki, A.: Some nuances of many-sorted universal algebra: A review. Bulletin of
the EATCS 104, 89–111 (2011)

27. Vene, V., Ghani, N., Johann, P., Uustalu, T.: Parametricity and strong dinaturality
(2006), https://www.ioc.ee/~tarmo/tday-voore/vene-slides.pdf

https://doi.org/10.4204/EPTCS.207.2
https://doi.org/10.4204/EPTCS.207.2
http://doi.acm.org/10.1145/3209108.3209166
https://doi.org/10.1017/S0956796817000077
https://doi.org/10.1017/S0956796817000077
https://doi.org/10.1007/11548133_3
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1016/j.entcs.2004.08.008
http://dx.doi.org/10.1016/j.entcs.2004.08.008
http://doi.acm.org/10.1145/2790449.2790514
http://doi.acm.org/10.1145/2790449.2790514
https://www.ioc.ee/~tarmo/tday-voore/vene-slides.pdf

A Proofs

A.1 Proof of Theorem 4

In this proof, we use the notation

A

GXX

GY Y

HXX

HY Y

HXYGXY

f1

f2

θX

θY

HXg

HgY

GXg

GgY

(notice the arrow) to denote that the outer diagram commutes due to the
fact that θ is a Barr-dinatural transformation and the inner square commutes.
Also, to make the diagrams easier to read, we use A⇒ B to denote the set of all
functions from A to B.

As for the (⇒) direction of Theorem 4, given a Barr-dinatural transformation
dX : (A ⇒ RXX) → RXX, we define the corresponding element of UFA as
ρFA(dUFA(UσFA · ηA)). In the (⇐) direction, given t ∈ UFA, we define the

corresponding Barr-dinatural as dX(f) = f̂(t).

Dinaturality of the result of the (⇐) direction. Given t ∈ UFA, we need to show
that the following diagram commutes for all Z, a, b, and g, assuming the inner
square commutes:

Z

A⇒ RXX

A⇒ RY Y

RXX

RY Y

RXYA⇒ RXY

a

b

f 7→ f̂(t)

f 7→ f̂(t)

RXg

RgY

A⇒ RXg

A⇒ RgY

Reading this diagram element-wise, the inner diagram reads that RXg(a(z)) =
RgX(b(z)) for all z ∈ Z, which is the assumption in the condition (c) in Defini-
tion 2 (instantiating f1 and f2 with a(z) and b(z) respectively). The conclusion

of the condition gives us RXg((̂a(z))(t)) = RXg((̂b(z))(t)) for all z ∈ Z, which
is exactly the element-wise reading of the diagram above.

The (⇒⇐) round-trip of the isomorphism. Given a Barr-dinatural transforma-
tion d, it is enough to see that the following diagram commutes for all sets X
and functions f : A→ RXX:

1

A⇒ UFA A⇒ RXX

A⇒ R(UFA)(UFA)

A⇒ R(UFA)(RXX)

A⇒ R(RXX)(RXX)

R(UFA)(UFA) R(RXX)(RXX) RXX

R(UFA)(RXX)

RXX

RXX

UFA

const ηA

const f

A⇒ UσFA

dUFA

A⇒ UσRX

dRXX

dX

R(UFA)f̂

Rf̂(RXX)

A⇒ R(UFA)f̂

A⇒ Rf̂(RXX)

id
ρRXρFA

f̂

UσRX

id

A

B

C

The diagram C follows from the fact that ρ is a component-wise retraction
of Uσ. To see that A commutes, it is enough to show that the following diagram

commutes:

1

A⇒ A

A⇒ UFA A⇒ RXX

A⇒ R(UFA)(UFA) A⇒ R(RXX)(RXX)

A⇒ R(UFA)(RXX)

const id

A⇒ ηA

A⇒ f

A⇒ UσFA A⇒ UσRX

A⇒ R(UFA)f̂ A⇒ Rf̂(RXX)

Since A ⇒ (-) is a functor, it is enough to show that the following diagram
commutes:

A

UFA RXX

R(UFA)(UFA) R(RXX)(RXX)

R(UFA)(RXX)

RXX

ηA

f

f̂

id

UσFA UσRX

R(UFA)f̂ Rf̂(RXX)

The top square is simply the freeness property of FA.

To see that B commutes, we use the fact that R(RXX)runX are jointly
monic for all X, which means that it is enough to see that the following diagram
commutes for run = runX,i for some i:

A⇒ RXXA⇒ R(RXX)(RXX)

R(RXX)(RXX) RXX

A⇒ R(RXX)X

R(RXX)X R(RXX)(RXX)

A⇒ UσRX

dRXX dX

UσRX

R(RXX)run

R(RXX)run

RrunX

A⇒ R(RXX)run

A⇒ RrunX

The triangles follow from the condition (f) in Definition 2.

The (⇐⇒) round-trip of the isomorphism. Given a t ∈ UFA, we need to show

that ρFA(̂(UσFA · ηA)(t)) = t. Since for all T -objects M and T -homorphisms

h : FA→M , it is the case that Ûh · ηA = Uh, we obtain ρFA(̂(UσFA · ηA)(t)) =
ρFA(UσFA(t)) = t, where the latter equality follows from the fact that ρ is a
component-wise retraction of Uσ.

The isomorphism between monads. We denote the Kleisli structure of the
monad UF by ηF and (-)◦, and of the “Cayley” monad as ηC and (-)∗. We
use ε to denote the counit of F a U .

Since we already have an isomorphism, it is enough to check that ηC and
(-)∗ are well-defined, that is, they are Barr-dinatural, and that one direction
of the isomorphism preserves the Kleisli structure. From this, it automatically
follows that the ηC and (-)∗ satisfy the axioms of Kleisli structure and that the
isomorphism in the other direction preserves it. The Barr-dinaturality of ηC

and (-)∗ is a routine calculation and we don’t show it here. We show that the
isomorphism ψA : UFA → (∀X.(A → RXX) → RXX) preserves ηF and (-)◦.
We check the component-wise equality for an arbitrary argument a applied to an
arbitrary argument v of appropriate types.

ψA(ηFA(a))X(v)

= (definition of ψ)

v̂(ηFA(a))

= (freeness of f̂)

v(a)

= (definition of ηC)

ηCA(a)X(v)

(((ψB · g)∗ · ψA)(a))X(v)

= (function composition)

((ψB · g)∗(ψA(a)))X(v)

= (definition of (-)∗)

ψA(a)X(z 7→ (ψB(g(z)))X(v))

= (definition of ψ)

ψA(a)X(z 7→ v̂(g(z)))

= (definition of ψ)

̂(z 7→ v̂(g(z)))(a)

= (definition of (̂-))

(UεRX · UF (z 7→ v̂(g(z))))(a)

= (function composition)

(UεRX · UF (v̂ · g))(a)

= (functor preserves composition)

(UεRX · UF v̂ · UFg)(a)

= (definition of (̂-))

(UεRX · UFUεRX · UFUFv · UFg)(a)

= (ε is a natural transformation)

(UεRX · UFv · UεFA · UFg)(a)

= (definition of ψ)

v̂(UεFA(UFg(a)))

= (definition of ψ)

ψA(UεFA(UFg(a)))X(v)

= (definition of (-)◦)

ψA(g◦(a))X(v)

A.2 The Isomorphism in Remark 6

The inverse of ϕ is given, not too surprisingly, as ϕ−1(y) = γji (y, [ε
t
i]t≤ej). We

check one inverse, the other one is similar:

ϕ(ϕ−1(y))

= (definitions of ϕ and ϕ−1)

γij(γ
j
i (y, [ε

t
i]t≤ej), [ε

k
j]k≤ei)

= (assoc-γ)

γjj (y, [γ
i
j(ε

t
i, [ε

k
j]k≤ei)]t≤ej)

= (beta-ε)

γjj (y, [ε
t
j]t≤ej)

= (eta-ε)

y

A.3 Proof of Theorem 7

Condition (b). We check that the given interpretation of operations J-K indeed
satisfies the equations of the generated theory. Since the interpretations are
functions, we check them extensionally, that is, that they are equal when applied
to arbitrary arguments.

Jπji K(JconsK([[x
j
p]j≤cp]p≤d))([yk]k≤ei)

= (definition of Jπji K)

JconsK([[xjp]j≤cp]p≤d)(ini(j, [yk]k≤ei))

= (definition of JconsK)

xji ([yk]k≤ei)

JconsK([[Jπji K(x)]j≤ci]i≤d)(inp(c, [yk]k≤ep))

= (definition of JconsK)
JπcpK(x)([yk]k≤ep)

= (definition of JπcpK)

x(inp(c, [yk]k≤ep))

Jγji K(Jε
k
j K, [xp]p≤ej)([yt]t≤ei)

= (definition of Jγji K)

Jεkj K([xp([yt]t≤ei)]p≤ej)

= (definition of Jεkj K)

xk([yt]t≤ei)

JγiiK(x, [Jε
j
i K]j≤ei)([yt]t≤ei)

= (definition of JγiiK)

x([Jεji K([yt]t≤ei)]j≤ei)

= (definition of Jεji K)
x([yj]j≤ei)

= (α-conversion)

x([yt]t≤ei)

Jγji K(Jγ
k
j K(x, [yt]t≤ek), [zs]s≤ej)([tq]q≤ei)

= (definition of Jγji K)

Jγkj K(x, [yt]t≤ek)([zs([tq]q≤ei)]s≤ej)

= (definition of Jγkj K)

x([yt([zs([tq]q≤ei)]s≤ej)]t≤ek)

= (definition of Jγji K)

x([Jγji K(yt, [zs]s≤ej)([tq]q≤ei)]t≤ek)

= (definition of Jγki K)

Jγki K(x, [Jγ
j
i K(yt, [zs]s≤ej)]t≤ek)([tq]q≤ei)

Condition (c). We need to prove that if it is the case that

RXg · f1 = RgY · f2, (4)

then RXg · f̂1 = RgY · f̂2. In order to do this, we prove a more general kind of
statement, which is mutually recursive on sorts.

First, recall that for a function f of an appropriate type, f̂ is defined as
Uf ′, where f ′ is the homomorphism obtained as the contraposition of f via the
adjunction. Since f ′ is a homomorphism, it is actually defined as a number of
functions, one for each sort—only the forgetful functor U selects the function
for the sort Ω. In the more general statement that we prove, we use all of these
functions, which we denote f̂ for the sort Ω and f̂ i for the sort Ki.

Let RiXY = Xei → Y . We show that if (4) holds, then for a well-typed
term t with variables in the sort Ω, it is the case that:

– RXg(f̂1(t)) = RgY (f̂2(t)), if t is of the sort Ω,

– RiXg(f̂1
i
(t)) = RigY (f̂2

i
(t)), if t is of the sort Ki,

We proceed by induction over the structure of t.

– If t is a variable, then the goal is simply the assumption (4).

– If t = εji , then for any [xk]k≤ei :

RiXg(f̂1
i
(εji))([xk]k≤ei)

= (structure of the representation)

RiXg(Jεji K)([xk]k≤ei)

= (definition of Ri)

g(Jεji K([xk]k≤ei))

= (definition of J-K)
g(xj)

= (definition of J-K)

Jεji K([g(xk)]k≤ei)

= (definition of Ri)

RigY (Jεji K)([xk]k≤ei)

= (structure of the representation)

RigY (f̂2
i
(εji))([xk]k≤ei)

– If t = γji (yt, [zs]s≤ej), then for any [xk]k≤ei :

RiXg(f̂1
i
(γji (yt, [zs]s≤ej)))([xk]k≤ei)

= (structure of the representation)

RiXg(Jγji K(f̂1
j
(yt), [f̂1

i
(zs)]s≤ej))([xk]k≤ei)

= (definition of Ri)

g(Jγji K(f̂1
j
(yt), [f̂1

i
(zs)]s≤ej)([xk]k≤ei))

= (definition of J-K)

g(f̂1
j
(yt)([f̂1

i
(zs)([xk]k≤ei)]s≤ej))

= (definition of Rj)

RjXg(f̂1
j
(yt))([f̂1

i
(zs)([xk]k≤ei)]s≤ej)

= (induction)

RjgY (f̂2
j
(yt))([f̂1

i
(zs)([xk]k≤ei)]s≤ej)

= (definition of Rj)

f̂2
j
(yt)([g(f̂1

i
(zs)([xk]k≤ei))]s≤ej)

= (definition of Ri)

f̂2
j
(yt)([RiXg(f̂1

i
(zs))([xk]k≤ei)]s≤ej)

= (induction)

f̂2
j
(yt)([RigY (f̂2

i
(zs))([xk]k≤ei)]s≤ej)

= (definition of Ri)

f̂2
j
(yt)([f̂2

i
(zs)([g(xk)]k≤ei)]s≤ej)

= (definition of J-K)

Jγji K(f̂2
j
(yt), [f̂2

i
(zs)]s≤ej)([g(xk)]k≤ei)

= (definition of Ri)

RigY (Jγji K(f̂2
j
(yt), [f̂2

i
(zs)]s≤ej))([xk]k≤ei)

= (structure of the representation)

RigY (f̂2
i
(γji (yt, [zs]s≤ej)))([xk]k≤ei)

Condition (d), σ is a homomorphism. We check that σ preserves the operations:

πqi (σ
Ω(y))([xt]t≤ei)

= (definition of π in RX)

σΩ(y)(ini(q, [xt]t≤ei))

= (definition of σΩ)

cons([[γik(πqi (y), [πjk(xt)]t≤ei)]j≤ek]k≤d)

= (definition of σi)

σi(πqi (y))([xt]t≤ei)

cons([[σk(yjk)]j≤ci]k≤d)(ini(c, [xt]t≤ei))

= (definition of cons in RX)

σi(yci)([xt]t≤ei)

= (definition of σi)

cons([[γik(yci , [π
j
k(xt)]t≤ei)]j≤ek]k≤d)

= (beta-π)

cons([[γik(πci (cons([[y
j
k]j≤ci]k≤d)), [π

j
k(xt)]t≤ei)]j≤ek]k≤d)

= (definition of σΩ)

σΩ(cons([[yjk]j≤ci]k≤d))(ini(c, [xt]t≤ei))

εci ([xt]t≤ei)

= (definition of ε in RX)

xc

= (beta-π)

cons([[πjk(xc)]j≤ek]k≤d)

= (beta-ε)

cons([[γik(εci , [π
j
k(xt)]t≤ei)]j≤ek]k≤d)

= (definition of σi)

σi(εci)([xt]t≤ei)

γji (σ
j(y), [σi(zk)]k≤ej)([xt]t≤ei)

= (definition of γ in RX)

σj(y)([σi(zk)([xt]t≤ei)]k≤ej)

= (definition of σi)

σj(y)([cons([[γip(zk, [π
q
p(xt)]t≤ei)]q≤ep]p≤d)]k≤ej)

= (definition of σj)

cons([[γjr(y, [π
s
r(cons([[γ

i
p(zk, [π

q
p(xt)]t≤ei)]q≤ep]p≤d))]k≤ej)]s≤er]r≤d)

= (beta-π)

cons([[γjr(y, [γ
i
r(zk, [π

s
r(xt)]t≤ei)]k≤ej)]s≤er]r≤d)

= (assoc-γ)

cons([[γir(γ
j
i (y, [zk]k≤es), [π

s
r(xt)]t≤ei)]s≤er]r≤d)

= (definition of σi)

σi(γji (y, [zk]k≤ej))([xt]t≤ei)

Condition (d), Uσ is Barr-dinatural. Given algebras M , N and a homomorphism
g : M → N , we need to show that the following diagram commutes for all sets A
and functions f1 : A→ UM , f2 : A→ UN , assuming that the “inner” triangle
commutes:

A

UM

UN

R(UM)(UM)

R(UN)(UN)

R(UM)(UN)

f1

f2

UσM

UσN

R(UM)(Ug)

R(Ug)(UN)

Ug

It is enough to show that this diagram commutes for all a ∈ A. So, let f1(a) = m
and f2(a) = n. In such a case, the inner triangle states that Ug(m) = n. We
show that the diagram commutes when the results agree when applied to the

same argument (ini(c, [xt]t≤ei)) for any i ≤ d, c ≤ ci, and [xt]t≤ei :

(R(UM)(Ug))(UσM (m))(ini(c, [xt]t≤ei))

= (definition of R)

Ug(UσM (m)(ini(c, [xt]t≤ei)))

= (definition of σ)

Ug(cons([[γik(πci (m), [πjk(xt)]t≤ei)]j≤ek]k≤d))

= (g is a homomorphism)

cons([[γci (π
c
i (Ug(m)), [πjk(Ug(xt))]t≤ei)]j≤ek]k≤d)

= (the ”inner” triangle)

cons([[γik(πci (n), [πjk(Ug(xt))]t≤ei)]j≤ek]k≤d)

= (definition of σ)

UσN (n)(ini(c, [Ug(xt)]t≤ei))

= (beta)

(z 7→ case z of ini(c, [xt]t≤ei)→ UσN (n)(ini(c, [Ug(xt)]t≤ei)))(ini(c, [xt]t≤ei))

= (definition of R)

(R(Ug)(UN))(UσN (n))(ini(c, [xt]t≤ei))

Condition (e), ρ is Barr-dinatural. Given two algebras M and N and a homo-
morphism g : M → N , we need to show that the following diagram commutes
for all sets A and functions f1 : A→ R(UM)(UM), and f2 : A→ R(UN)(UN),
assuming the “inner” square commutes:

A

R(UM)(UM)

R(UN)(UN)

R(UM)(UN)

UM

UN

f1

f2

ρM

ρN

Ug

R(UM)(Ug)

R(Ug)(UN)

It is enough to show that this diagram commutes for all a ∈ A. So, let f1(a) = m
and f2(a) = n. In such a case, the inner diargam states that for all i ≤ d, c ≤ ci,
and [xt]t≤ei , it is the case that Ug(m(ini(c, [xt]t≤ei))) = n(ini(c, [Ug(xt)]t≤ei)).
We show that both paths of the “outer” diagram are equal, where by Ug(wmr)

we mean applying Ug to every element of the sequence wmr :

Ug(ρM (m))

= (definition of ρ)

Ug(cons([[πjk(m(ink(j, [cons([wmr]r<k, [ε
t
k]ck , [w

m
r]k<r≤d)]t≤ek)))]j≤ck]k≤d))

= (g is a homomorphism)

cons([[πjk(Ug(m(ink(j, [cons([wmr]r<k, [ε
t
k]ck , [w

m
r]k<r≤d)]t≤ek))))]j≤ck]k≤d)

= (the ”inner” diagram)

cons([[πjk(n(ink(j, [Ug(cons([wmr]r<k, [ε
t
k]ck , [w

m
r]k<r≤d))]t≤ek)))]j≤ck]k≤d)

= (g is a homomorphism)

cons([[πjk(n(ink(j, [cons([Ug(wmr)]r<k, [Ug(εtk)]ck , [Ug(wmr)]k<r≤d)]t≤ek)))]j≤ck]k≤d)

= (g is a homomorphism)

cons([[πjk(n(ink(j, [cons([Ug(wmr)]r<k, [ε
t
k]ck , [Ug(wmr)]k<r≤d)]t≤ek)))]j≤ck]k≤d)

= (see below)

cons([[πjk(n(ink(j, [cons([wnr]r<k, [ε
t
k]ck , [w

n
r]k<r≤d)]t≤ek)))]j≤ck]k≤d)

To check the “see below” step, it is enough to show that for all r ≤ d, it is the
case that Ug(wmr) = wnr .

Ug(wmr)

= (definition of w)

Ug([πcr(m(inr(c, [ε
j
r]j≤er)))]c≤cr)

= (notation for w)

[Ug(πcr(m(inr(c, [ε
j
r]j≤er))))]c≤cr

= (g is a homomorphism)

[πcr(Ug(m(inr(c, [ε
j
r]j≤er))))]c≤cr

= (the ”inner” diagram)

[πcr(n(inr(c, [Ug(εjr)]j≤er)))]c≤cr

= (g is a homomorphism)

[πcr(n(inr(c, [ε
j
r]j≤er)))]c≤cr

= (definition of w)

wnr

Condition (e), ρ is a retraction of σ. We check this fact for every algebra M
and m ∈M :

ρM (UσM (m))

= (definition of ρ)

cons([[πjk(UσM (m)(ink(j, [cons([wUσ(m)
r]r<k, [ε

t
k]ck , [w

Uσ(m)
r]k<r≤d)]t≤ek)))]j≤ck]k≤d)

= (definition of σ)

cons([[πjk(cons([[γkq (πjk(m), [πwq (cons([wUσ(m)
r]r<k, [ε

t
k]ck , [w

Uσ(m)
r]k<r≤d))]t≤ek)]w≤eq]q≤d))]j≤ck]k≤d)

= (beta-π)

cons([[γkk (πjk(m), [πjk(cons([wUσ(m)
r]r<k, [ε

t
k]ck , [w

Uσ(m)
r]k<r≤d))]t≤ek)]j≤ck]k≤d)

= (beta-π)

cons([[γkk (πjk(m), [εtk]t≤ek)]j≤ck]k≤d)

= (eta-ε)

cons([[πjk(m)]j≤ck]k≤d)

= (eta-π)

m

Condition (f). We show that R(RXX)runX is a jointly monic family. Assume
that R(RXX)runX,i · f = R(RXX)runX,i · g for all i ∈ IX and some f, g :
A→ R(RXX)(RXX). This means that for all a ∈ A, (R(RXX)runX,i)(f(a)) =
(R(RXX)runX,i)(g(a)), that is, (R(RXX)runX,i)(f(a))(z) = (R(RXX)runX,i)(g(a))(z)

for all z ∈
∑d
j=1 cj × (RXX)ej . Unfolding the definition of R, this means that

runX,i(f(a)(z)) = runX,i(g(a)(z)), so, unfolding the definition of run, f(a)(z)(i) =
g(a)(z)(i). Hence, by the extensional equality of functions, f = g.

To show that the diagram commutes, we need to show that for all X, it is
the case that (R(RXX)runX,i) · UσRX = RrunX,iX for all i = (ina(b, [yq]q≤ea)),
where a ≤ d, b ≤ ca, and [yq]q≤ea . We show that both sides are equal if applied
to any f ∈ RXX. To show this, we show that both are equal when applied to

(ini(c, [xt]t≤ei)) for all i ≤ d, c ≤ ci, and [xt]t≤ei .

(R(RXX)run)(UσRX(f))(ini(c, [xt]t≤ei))

= (definition of R)

run(UσRX(f)(ini(c, [xt]t≤ei)))

= (definition of σ)

run(cons([[γik(πci (f), [πjk(xt)]t≤ei)]j≤ek]k≤d))

= (definition of run)

cons([[γik(πci (f), [πjk(xt)]t≤ei)]j≤ek]k≤d)(ina(b, [yq]q≤ea))

= (definition of cons in RX)

γia(πci (f), [πba(xt)]t≤ei)([yq]q≤ea)

= (definition of γ in RX)

πci (f)([πba(xt)([yq]q≤ea)]t≤ei)

= (definition of π in RX)

πci (f)([xt(ina(b, [yq]q≤ea))]t≤ei)

= (definition of π in RX)

f(ini(c, [xt(ina(b, [yq]q≤ea))]t≤ei))

= (definition of run)

f(ini(c, [run(xt)]t≤ei))

= (definition of R)

(RrunX)(f)(ini(c, [xt]t≤ei))

A.4 On Remark 8

Theorem 9 (Beck’s monadicity theorem). A functor G : D → C is monadic
if and only if the following three conditions hold:

(a) U has a left adjoint,
(b) D has coequalisers of U -split pairs, and G preserves these coequalisers,
(c) U is conservative (that is, it reflects isomorphisms).

Theorem 10. Assume d ∈ N and a multi-sorted theory T with sorts S =
{Ω,K1, . . . ,Kd}, where Ω is the main sort. If T includes the operations:

cons :
∏d
i=1Ki → Ω

πi : Ω → Ki, for i ≤ d
εi : Ki, for i ≤ d

and the equations:

πi(cons([xi]i≤d)) = xi (beta-π)

cons([πi(x)]i≤d) = x (eta-π)

then the compound functor

Set Set|S| T-Alg
M U

is monadic.

We show the result using Beck’s theorem. The condition (a) is trivial, as the
components of the compund functor are both right adjoints.

The condition (b). Since the functor U is monadic, we know that T-Alg has
coequalisers of U -split pairs and that U preserves these coequalisers. Colimits in
Set|S| are calculated pointwise (since it is a functor category), so M preserves all
colimits, including coequalisers that arise as coequalisers of U -split pairs preserved
by U . Thus, it is sufficient to show that every MU -split pair is also a U -split pair.
In detail, this means that given any T-algebras A = 〈AΩ , A1, . . . , Ad, J-KA〉 and
B = 〈BΩ , B1, . . . , Bd, J-KB〉 (we will use superscripts to denote the interpretations
of operations, for example, consA), homomorphisms f = 〈fΩ , f1, . . . , fd〉 and
g = 〈gΩ , g1, . . . , gd〉 of the type A→ B, and the following diagram in Set:

AΩ BΩ C

h

s

gΩ

fΩ

t

such that

fΩ · t = id (5)

h · s = id (6)

s · h = gΩ · t (7)

it is sufficient to show that there exists the following diagram in Set|S|:

〈AΩ , A1, . . . , Ad〉 〈BΩ , B1, . . . , Bd〉 〈CΩ , C1, . . . , Cd〉

〈hΩ , h1, . . . , hd〉

〈sΩ , s1, . . . , sd〉

Ug

Uf

〈tΩ , t1, . . . , td〉

that satisfies the obvious analogues of the laws (5), (6), and (7).
For starters, we define a section for each projection πi:

σi(x) = cons([εk]k<i, x, [εk]i<k≤d) (8)

Since homomorphisms preserve operations, σ commutes with homomorphisms,
for example, fΩ(σAi (x)) = σBi (fi(x)).

With this, we define:

ti(b) = πAi (t(σBi (b))) (9)

tΩ(b) = consA([ti(π
B
i (b))]i≤d) (10)

CΩ = C (11)

hΩ = h (12)

sΩ = gΩ · tΩ · s (13)

Before we define the rest of the structure, we need to prove some facts:

Fact 11. fi · ti = id

Proof.

fi(ti(b))

= (definition of ti)

fi(π
A
i (t(σBi (b))))

= (f is a homomorphism)

πBi (fΩ(t(σBi (b))))

= (5)

πBi (σBi (b))

= (σ is a section of π)

b

ut

Fact 12. fΩ · tΩ = id

Proof.

fΩ(tΩ(b))

= (definition of tΩ)

fΩ(consA([ti(π
B
i (b))]i≤d))

= (f is a homomorphism)

consB([fi(ti(π
B
i (b)))]i≤d)

= (Fact 11)

consB([πBi (b)]i≤d)

= (eta-π)

b

ut

Fact 13. h · sΩ = id

Proof.

h(sΩ(c))

= (definition of sΩ)

h(gΩ(tΩ(s(c))))

= (h is a coequaliser of fΩ and gΩ)

h(fΩ(tΩ(s(c))))

= (definition of tΩ)

h(fΩ(consA([ti(π
B
i (s(c)))]i≤d)))

= (f is a homomorphism)

h(consB([fi(ti(π
B
i (s(c))))]i≤d))

= (Fact 11)

h(consB([(πBi (s(c)))]i≤d))

= (eta-π)

h(s(c))

= (6)

c

ut

Fact 14. gΩ · tΩ · gΩ = gΩ · tΩ · fΩ

Proof.

gΩ(tΩ(gΩ(a)))

= (definition of tΩ)

gΩ(consA([ti(π
B
i (gΩ(a)))]i≤d))

= (definition of ti)

gΩ(consA([πAi (t(σBi (πBi (gΩ(a)))))]i≤d))

= (definition of σi)

gΩ(consA([πAi (t(consB([εBk]k<i, π
B
i (gΩ(a)), [εBk]i<k≤d)))]i≤d))

= (g is a homomorphism)

gΩ(consA([πAi (t(consB([εBk]k<i, gi(π
A
i (a)), [εBk]i<k≤d)))]i≤d))

= (g is a homomorphism)

gΩ(consA([πAi (t(consB([gk(εAk)]k<i, gi(π
A
i (a)), [gk(εAk)]i<k≤d)))]i≤d))

= (g is a homomorphism)

gΩ(consA([πAi (t(gΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d))))]i≤d))

= (g is a homomorphism)

consB([gi(π
A
i (t(gΩ(consA([εAk]k<i, π

A
i (a), [εAk]i<k≤d)))))]i≤d)

= (g is a homomorphism)

consB([πBi (gΩ(t(gΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d)))))]i≤d)

= (7)

consB([πBi (s(h(gΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d)))))]i≤d)

= (h coequalises fΩ and gΩ)

consB([πBi (s(h(fΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d)))))]i≤d)

= (7)

consB([πBi (gΩ(t(fΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d)))))]i≤d)

= (g is a homomorphism – similarly to the reasoning above)

gΩ(consA([πAi (t(fΩ(consA([εAk]k<i, π
A
i (a), [εAk]i<k≤d))))]i≤d))

= (f is a homomorphism – similarly to the reasoning above)

gΩ(consA([πAi (t(consB([εBk]k<i, π
B
i (fΩ(a)), [εBk]i<k≤d)))]i≤d))

= (definitions of σi, ti, and tΩ – similarly to the reasoning above)

gΩ(tΩ(fΩ(a)))

ut

Fact 15. If h(b) = h(b′), then gΩ(tΩ(b)) = gΩ(tΩ(b′)).

Proof. Using the construciton of coequalisers in Set, we get that h(b) = h(b′) if
and only if b ∼ b′, where the relation ∼ ⊆ B×B is defined by the following rules:

fΩ(a) = b gΩ(a) = b′

b ∼ b′
b ∼ b

b′ ∼ b
b ∼ b′

b ∼ b′ b′ ∼ b′′

b ∼ b′′

We proceed by induction on derivations. In the case of the first rule, we need to
show that gΩ(tΩ(fΩ(a))) = gΩ(tΩ(gΩ(a))) for an arbitrary a, which is exactly
Fact 14. All the other cases follow trivially from the properties of equality.

Fact 16. sΩ · h = gΩ · tΩ

Proof. Unfolding the definition of sΩ, we need to show gΩ · tΩ · s · h = gΩ · tΩ.
Thus, employing Fact 15, it is enough to show that h · s · h = h, which follows
from (6). ut

Fact 17. πBi · sΩ · h = gi · ti · πBi

Proof.

πBi (sΩ(h(b)))

= (Fact 16)

πBi (gΩ(tΩ(b)))

= (g is a homomorphism)

gi(π
A
i (tΩ(b)))

= (definition of tΩ)

gi(π
A
i (consA([ti(π

B
i (b))]i≤d)))

= (beta-π)

gi(ti(π
B
i (b)))

ut

For each i ≤ d, we define Ci, hi, and a function πCi : C → Ci as parts of the
following pushout:

B

Bi

C

Ci

h

hi

πBi πCi
(14)

We define si as the unique morphism induced by the universal property of this
pushout:

B

Bi

C

Ci

BiAi

B
h

hi

πBi πCi

si
ti

gi

sΩ

πBi
(15)

where the two outer paths commute due to Fact 17.

Fact 18. hi · si = id

Proof. We notice that πCi is epic, since πBi is epic and pushouts preserve epis.
Thus, it is sufficient to show that hi · si · πCi = πCi . We calculate:

hi · si · πCi
= (diagram (15))

hi · πBi · sΩ
= (diagram (14))

πCi · h · sΩ
= (Fact 13)

πCi

ut

Fact 19. si · hi = gi · ti

Proof. The square at the bottom of the diagram (15). ut

To sum up, the equivalent in Set|S| of (5) is given by Facts 11 and 12. The
equivalent of (6) is given by Facts 18 and 13. The equivalnet of (7) is given by
Facts 19 and 16.

The condition (c). Since U is monadic, hence conservative, it is enough to
show that M is also conservative. Let f : A→ B be a homomorphism as above,
but now assume that fΩ : AΩ → BΩ is an isomorphism in Set. We show that
for each i ≤ d, the function fi : Ai → Bi is also an isomorphism. We define its

inverse as f−1i = πAi · f
−1
Ω · σBi , where σ is as above.

f−1i · fi
= (definition of f−1i)

πAi · f−1Ω · σBi · fi
= (σ commutes with homomorphisms)

πAi · f−1Ω · fΩ · σAi
= (fΩ is an isomorphism)

πAi · σAi
= (definition of σ and (beta-π))

id

In the other direction:

fi · f−1i
= (definition of f−1i)

fi · πAi · f−1Ω · σBi
= (f is a homomorphism)

πBi · fΩ · f−1Ω · σBi
= (fΩ is an isomorphism)

πBi · σBi
= (definition of σ and (beta-π))

id

A.5 Proof of the Equalities in Section 5.2

putj(putk(x))

= (definition of put)

cons([πj(cons([πk(x)]n))]n)

= (beta-π)

cons([πk(x)]n)

= (definition of put)

putk(x)

putj(get([xi]i≤n))

= (definition of get)

putj(cons([πi(xi)]i≤n))

= (definition of put)

cons([πj(cons([πi(xi)]i≤n))]n)

= (beta-π)

cons([πj(xj)]n)

= (definition of put)

putj(xj)

get([get([xi]i≤n)]n)

= (definition of get)

cons([πi(cons([πj(xj)]j≤n))]i≤n)

= (beta-π)

cons([πi(xi)]i≤n)

= (definition of get)

get([xi]i≤n)

get([puti(xi)]i≤n)

= (definition of put)

get([cons([πi(xi)]n)]i≤n)

= (definition of get)

cons([πi(cons([πi(xi)]n))]i≤n)

= (beta-π)

cons([πi(xi)]i≤n)

= (definition of get)

get([xi]i≤n)

A.6 Proof of the Equality in Section 5.3

putk(choose(x, y))

= (definition of choose)

putk(cons([γ(πj(x), πj(y))]j≤n))

= (definition of put)

cons([πk(cons([γ(πj(x), πj(y))]j≤n))]n)

= (beta-π)

cons([γ(πk(x), πk(y))]n)

= (beta-π)

cons([γ(πj(cons([πk(x)]n)), πj(cons([πk(y)]n)))]j≤n)

= (definition of choose)

choose(cons([πk(x)]n), cons([πk(y)]n))

= (definition of put)

choose(putk(x), putk(y))

	Equational Theories and Monads from Polynomial Cayley Representations

