On Retracts of Algebras with Iteration

Sergey Goncharov¹, Lutz Schröder¹, Christoph Rauch¹, and Maciej Piróg²

¹ Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ² University of Wrocław, Poland

Abstract. We show that iteration-congruent retracts of (completely) iterative algebras are (complete) Elgot algebras. Conversely, for an iteratable endofunctor H, every (complete) Elgot H-algebra arises as an iteration-congruent retract of a (completely) iterative H-algebra.

In a recent work, Goncharov *et al.* [5] study a relationship between different kinds of monads with iteration. In particular, they show that iteration-congruent retracts of completely iterative monads [1] yield complete Elgot monads [3]. Conversely, provided certain final coalgebras exist, every complete Elgot monad arises this way, that is, as an iteration-congruent retract of a completely iterative monad. In this note, we present similar results for algebras with iteration: (complete) Elgot algebras [2] and (completely) iterative algebras [1,6].

Let H be an endofunctor on a category \mathscr{C} with binary coproducts. An Halgebra with iteration is a triple $\langle A, a : HA \to A, (-)^{\dagger} \rangle$, where the $(-)^{\dagger}$ operator assigns to every morphism $e : X \to A + HX$ a solution, that is, a morphism $e^{\dagger} : X \to A$ such that $e^{\dagger} = [\operatorname{id}, a] \cdot (\operatorname{id} + He^{\dagger}) \cdot e$. A complete Elgot algebra is an algebra with iteration in which the $(-)^{\dagger}$ operator satisfies two additional axioms: functoriality and compositionality (see [2]). In what follows, given morphisms $e : X \to A + HX$ and $f : A \to B$, we write $f \bullet e$ for the morphism $(f + \operatorname{id}) \cdot e :$ $X \to B + HX$.

Definition 1. Let $\langle A, a, (-)^{\dagger} \rangle$ be an *H*-algebra with iteration, and $\langle B, b \rangle$ be an *H*-algebra. We call a morphism $\rho : A \to B$ an iteration-congruent retraction if the following hold:

- 1. ρ is an algebra homomorphism $\langle A, a \rangle \rightarrow \langle B, b \rangle$,
- 2. ρ as a morphism in \mathscr{C} has a section $\sigma: B \to A$,
- 3. ρ is iteration-congruent, that is, for all $e, f : X \to A + HX$, it is the case that $\rho \bullet e = \rho \bullet f$ implies $\rho \cdot e^{\dagger} = \rho \cdot f^{\dagger}$.

Theorem 2. Let $\langle A, a : HA \to A, (\cdot)^{\dagger} \rangle$ be a complete Elgot H-algebra, and $\langle B, b \rangle$ be an H-algebra. Then, given an iteration-congruent retraction $\rho : A \to B$, the algebra $\langle B, b \rangle$ can be given a complete Elgot structure with the solution of a morphism $e : X \to B + HX$ given as $e^{\dagger} = \rho \cdot (\sigma \bullet e)^{\dagger}$. Moreover, in such a case ρ preserves solutions, that is, $(\rho \bullet e)^{\ddagger} = \rho \cdot e^{\dagger}$.

A completely iterative algebra is an algebra $\langle A, a : HA \to A \rangle$ such that for a morphism $e : X \to A + HX$, there exists a unique solution $e^{\dagger} : X \to A$. Every completely iterative algebra, understood as an algebra with iteration, is a complete Elgot algebra. Thus, we obtain the following corollary of Theorem 2: **Corollary 3.** An iteration-congruent retract of a completely iterative algebra is a complete Elgot algebra.

We also show that the converse holds if we assume an additional property of the endofunctor H. We say that H is *iteratable* [1] if the endofunctor A+H(-) has a final coalgebra for every object A. We write $H^{\infty}A$ to denote the carrier of such a final coalgebra. Importantly, if H is iteratable, each object A generates a free complete Elgot algebra $\mathbf{F}A = \langle H^{\infty}A, \tau, (-)^{\dagger} \rangle$, which happens to be completely iterative (see [2] for a detailed description of these results).

Theorem 4. If H is iteratable, then every complete Elgot H-algebra $\langle A, a, (-)^{\dagger} \rangle$ arises as an iteration-congruent retract of a completely iterative algebra. The retraction is given by the unique morphism from $\mathbf{F}A$, given as $\mathsf{out}^{\ddagger} : H^{\infty}A \to A$, where $\mathsf{out} : H^{\infty}A \to A + HH^{\infty}A$ is the action of the final coalgebra.

An instance of such an iteration-congruent retraction can be found in Example 3.10 in [2]. Consider a complete lattice with a carrier A. Given a possibly infinite binary tree with labels from A in the leaves (that is, the carrier of the free completely iterative algebra of the endofunctor $X \mapsto X \times X$ on **Set** generated by A), the iteration-congruent retraction takes the join of all the leaves in the tree. This gives us a complete Elgot structure on the complete lattice A.

Adámek *et al.* [1,2] consider also non-complete versions of Elgot algebras and iterative algebras. For those, we assume that \mathscr{C} is locally finitely presentable, and we require algebras with iteration to have solutions for morphisms $e: X \to A+HX$ if X is finitely presentable. The results shown in this note trivially hold in the non-complete version as well, since they do not rely on completeness and the construction of solutions does not require solving morphisms with different X's.

Theorem 4 is related to previous work [4] as follows. By [4, Theorem 5.7], the category of complete Elgot algebras is isomorphic to the category of (Eilenberg-Moore) H^{∞} -algebras, and so the retraction $H^{\infty}A \to A$ in question can be alternatively obtained as the H^{∞} -algebra structure on A. Conditions of Definition 1 are easily seen to be satisfied, e.g. (3) is due to the fact that any H^{∞} -algebra structure is always an H^{∞} -algebra morphism, and those isomorphically correspond to complete Elgot algebra morphisms.

References

- Peter Aczel, Jiří Adámek, Stefan Milius, and Jiří Velebil. Infinite trees and completely iterative theories: A coalgebraic view. *Theor. Comput. Sci.*, 300:1–45, 2003.
- Jiří Adámek, Stefan Milius, and Jiří Velebil. Elgot algebras. Log. Methods Comput. Sci., 2(5:4):31 pp., 2006.
- Jiří Adámek, Stefan Milius, and Jiří Velebil. Equational properties of iterative monads. Inform. and Comput., 208(12):1306–1348, 2010.
- 4. Sergey Goncharov, Stefan Milius, and Christoph Rauch. Complete Elgot monads and coalgebraic resumptions. In *MFPS 2016*, 2016.
- Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded and unguarded iteration. In FOSSACS 2017, 2017.
- Stefan Milius. Completely iterative algebras and completely iterative monads. Inform. and Comput., 196:1–41, 2005.

A Proofs

Full definition of complete Elgot algebras

For convenience of the reader, we recall the remaining parts of the definition of complete Elgot algebras, to be found in [2]. For two morthpisms $e: X \to Y + HX$ and $f: Y \to A + HY$, we form a morphism $f \bullet e: Y + X \to A + H(Y + X)$ as $f \bullet e = (id + [Hinl, Hinr]) \cdot (f + id) \cdot [inl, e]$. The two omitted axioms are as follows:

- Functoriality: Let $e = X \rightarrow A + HX$ and $f = Y \rightarrow A + HY$ be morphisms, and $h: X \rightarrow Y$ be a coalgebra homomorphism, that is, $(id + Hh) \cdot e = f \cdot h$. Then, $e^{\dagger} = f^{\dagger} \cdot h$.
- Compositionality: Let $e: X \to Y + HX$ and $f: Y \to A + HY$. Then, $(f^{\dagger} \bullet e)^{\dagger} = (f \bullet e)^{\dagger} \cdot \text{inr.}$

Proof of Theorem 2

We proceed with a number of facts:

(A) For all e it is the case that $\rho \cdot e^{\dagger} = \rho \cdot ((\sigma \cdot \rho) \bullet e)^{\dagger}$:

$\rho \bullet e = (\rho \cdot \sigma \cdot \rho) \bullet e = \rho \bullet ((\sigma \cdot \rho) \bullet e)$	(section-retraction, props. of \bullet)
$\implies \rho \cdot e^{\dagger} = \rho \cdot ((\sigma \cdot \rho) \bullet e)^{\dagger}$	(congruence)

(B) $(-)^{\ddagger}$ gives a solution:

$e^{\ddagger} = \rho \cdot (\sigma \bullet e)^{\dagger}$	$(\text{def. of } (-)^{\ddagger})$
$= \rho \cdot [id, a] \cdot (id + H(\sigma \bullet e)^{\dagger}) \cdot (\sigma \bullet e)$	(solution)
$= [\rho, \rho \cdot a] \cdot (id + H(\sigma \bullet e)^{\dagger}) \cdot (\sigma \bullet e)$	(coproduct)
$= [\rho, b \cdot H\rho] \cdot (id + H(\sigma \bullet e)^{\dagger}) \cdot (\sigma \bullet e)$	$(\rho \text{ is a homomorphism})$
$= [id, b \cdot H\rho] \cdot (\rho + H(\sigma \bullet e)^{\dagger}) \cdot (\sigma + id) \cdot e$	(coproduct, def. of $\bullet)$
$= [id, b \cdot H\rho] \cdot (id + H(\sigma \bullet e)^{\dagger}) \cdot ((\rho \cdot \sigma) + id) \cdot (\rho $	e (coproduct)
$= [id, b \cdot H\rho] \cdot (id + H(\sigma \bullet e)^{\dagger}) \cdot e$	(section-retraction)
$= [id, b] \cdot (id + H(\rho \cdot (\sigma \bullet e)^{\dagger})) \cdot e$	(coproduct, functor)
$= [id, b] \cdot (id + He^{\ddagger}) \cdot e$	$(def. of (-)^{\ddagger})$

(C) $(-)^{\ddagger}$ is functorial: Let $e: X \to B + HX$, $f: Y \to B + HY$, and $h: X \to Y$ be a (B + H(-))-coalgebra homomorphism $\langle X, e \rangle \to \langle Y, f \rangle$. First, we notice that h is also a homomorphism between (A + H(-))-coalgebras $\langle X, \sigma \bullet e \rangle$ and $\langle Y, \sigma \bullet f \rangle$:

$(\sigma \bullet f) \cdot h = (\sigma + id) \cdot f \cdot h$	$(\text{def. of } \bullet)$
$= (\sigma + \mathrm{id}) \cdot (\mathrm{id} + Hh) \cdot e$	(h homomorphism)
$= (id + Hh) \cdot (\sigma + id) \cdot e$	(coproduct)
$= (id + Hh) \cdot (\sigma \bullet e)$	(def. of $\bullet)$

To show functoriality of $(-)^{\ddagger}$:

$$\begin{split} e^{\ddagger} &= \rho \cdot (\sigma \bullet e)^{\dagger} & (\text{def. of } (\text{-})^{\ddagger}) \\ &= \rho \cdot (\sigma \bullet f)^{\dagger} \cdot h & (\text{functoriality of } (\text{-})^{\dagger}) \\ &= f^{\ddagger} \cdot h & (\text{def. of } (\text{-})^{\ddagger}) \end{split}$$

(D) (-)[‡] is compositional: Let $e: X \to Y + HX$ and $f: Y \to B + HY$. Then:

$$(f^{\ddagger} \bullet e)^{\ddagger} = \rho \cdot (\sigma \bullet (\rho \cdot (\sigma \bullet f)^{\dagger}) \bullet e)^{\dagger}$$
 (def. of $(-)^{\ddagger}$)

$$= \rho \cdot ((\sigma \bullet \rho) \bullet (\sigma \bullet f)^{\dagger} \bullet e)^{\dagger}$$
 (props. of \bullet)

$$= \rho \cdot ((\sigma \bullet f)^{\dagger} \bullet e)^{\dagger}$$
 (A)

$$= \rho \cdot ((\sigma \bullet f) \bullet e)^{\dagger} \cdot \text{inr}$$
 (compositionality of $(-)^{\dagger}$)

$$= \rho \cdot (\sigma \bullet (f \bullet e))^{\dagger} \cdot \text{inr}$$
 (props. of \bullet and \bullet)

$$= (f \bullet e)^{\ddagger} \cdot \text{inr}$$
 (def. of $(-)^{\ddagger}$)

(E) ρ preserves solutions:

$$(\rho \bullet e)^{\ddagger} = \rho \cdot (\sigma \bullet (\rho \bullet e))^{\dagger} \qquad (\text{def. of } (-)^{\ddagger})$$
$$= \rho \cdot ((\sigma \cdot \rho) \bullet e)^{\dagger} \qquad (\text{properties of } \bullet)$$
$$= \rho \cdot e^{\dagger} \qquad (A)$$

Proof of Theorem 4

Let $\eta_A : A \to H^{\infty}A$ denote the canonical injection associated with the free object. Let $\rho : H^{\infty}A \to A$ be the unique homomorphism of Elgot algebras (that is, a solution-preserving morphism) such that $\mathsf{id} = \rho \cdot \eta_A$ obtained from the freeness of $\mathbf{F}A$. Since solution-preserving morphisms are homomorphisms of H-algebras, to see that ρ is an iteration-congruent retraction, it is left to check that it is indeed a congruence. For this, assume $\rho \bullet e = \rho \bullet f$ for some morphisms $e, f : X \to H^{\infty}A + HX$. Then:

$$\begin{split} \rho \cdot e^{\dagger} &= (\rho \bullet e)^{\ddagger} & (\rho \text{ preserves solutions}) \\ &= (\rho \bullet f)^{\ddagger} & (\text{assumption}) \\ &= \rho \cdot f^{\dagger} & (\rho \text{ preserves solutions}) \end{split}$$

We also need to check that the $(-)^{\ddagger}$ operator is indeed equal to the one obtained by the construction from Theorem 2:

(section-retraction $)$	$e^{\ddagger} = ((\rho \cdot \eta_A) \bullet e)^{\ddagger}$
(props. of \bullet)	$= (\rho \bullet (\eta_A \bullet e))^{\ddagger}$
$(\rho \text{ preserves solutions})$	$= \rho \cdot (\eta_A \bullet e)^{\dagger}$