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Abstract. We show that iteration-congruent retracts of (completely)
iterative algebras are (complete) Elgot algebras. Conversely, for an it-
eratable endofunctor H, every (complete) Elgot H-algebra arises as an
iteration-congruent retract of a (completely) iterative H-algebra.

In a recent work, Goncharov et al. [5] study a relationship between different
kinds of monads with iteration. In particular, they show that iteration-congruent
retracts of completely iterative monads [1] yield complete Elgot monads [3].
Conversely, provided certain final coalgebras exist, every complete Elgot monad
arises this way, that is, as an iteration-congruent retract of a completely itera-
tive monad. In this note, we present similar results for algebras with iteration:
(complete) Elgot algebras [2] and (completely) iterative algebras [1,6].

Let H be an endofunctor on a category C with binary coproducts. An H-
algebra with iteration is a triple 〈A, a : HA → A, (-)

†〉, where the (-)
†

operator
assigns to every morphism e : X → A + HX a solution, that is, a morphism
e† : X → A such that e† = [id, a] · (id +He†) · e. A complete Elgot algebra is an

algebra with iteration in which the (-)
†

operator satisfies two additional axioms:
functoriality and compositionality (see [2]). In what follows, given morphisms
e : X → A+HX and f : A→ B, we write f • e for the morphism (f + id) · e :
X → B +HX.

Definition 1. Let 〈A, a, (-)
†〉 be an H-algebra with iteration, and 〈B, b〉 be an

H-algebra. We call a morphism ρ : A → B an iteration-congruent retraction if
the following hold:

1. ρ is an algebra homomorphism 〈A, a〉 → 〈B, b〉,
2. ρ as a morphism in C has a section σ : B → A,
3. ρ is iteration-congruent, that is, for all e, f : X → A + HX, it is the case

that ρ • e = ρ • f implies ρ · e† = ρ · f†.
Theorem 2. Let 〈A, a : HA → A, (-)

†〉 be a complete Elgot H-algebra, and
〈B, b〉 be an H-algebra. Then, given an iteration-congruent retraction ρ : A→ B,
the algebra 〈B, b〉 can be given a complete Elgot structure with the solution of a
morphism e : X → B+HX given as e‡ = ρ · (σ • e)†. Moreover, in such a case ρ
preserves solutions, that is, (ρ • e)‡ = ρ · e†.

A completely iterative algebra is an algebra 〈A, a : HA → A〉 such that for
a morphism e : X → A + HX, there exists a unique solution e† : X → A.
Every completely iterative algebra, understood as an algebra with iteration, is a
complete Elgot algebra. Thus, we obtain the following corollary of Theorem 2:



Corollary 3. An iteration-congruent retract of a completely iterative algebra is
a complete Elgot algebra.

We also show that the converse holds if we assume an additional property of
the endofunctor H. We say that H is iteratable [1] if the endofunctor A+H(-) has
a final coalgebra for every object A. We write H∞A to denote the carrier of such
a final coalgebra. Importantly, if H is iteratable, each object A generates a free
complete Elgot algebra FA = 〈H∞A, τ, (-)

†〉, which happens to be completely
iterative (see [2] for a detailed description of these results).

Theorem 4. If H is iteratable, then every complete Elgot H-algebra 〈A, a, (-)‡〉
arises as an iteration-congruent retract of a completely iterative algebra. The
retraction is given by the unique morphism from FA, given as out‡ : H∞A→ A,
where out : H∞A→ A+HH∞A is the action of the final coalgebra.

An instance of such an iteration-congruent retraction can be found in Exam-
ple 3.10 in [2]. Consider a complete lattice with a carrier A. Given a possibly
infinite binary tree with labels from A in the leaves (that is, the carrier of the free
completely iterative algebra of the endofunctor X 7→ X ×X on Set generated
by A), the iteration-congruent retraction takes the join of all the leaves in the
tree. This gives us a complete Elgot structure on the complete lattice A.

Adámek et al. [1,2] consider also non-complete versions of Elgot algebras and
iterative algebras. For those, we assume that C is locally finitely presentable,
and we require algebras with iteration to have solutions for morphisms e : X →
A+HX ifX is finitely presentable. The results shown in this note trivially hold in
the non-complete version as well, since they do not rely on completeness and the
construction of solutions does not require solving morphisms with different X’s.

Theorem 4 is related to previous work [4] as follows. By [4, Theorem 5.7], the
category of complete Elgot algebras is isomorphic to the category of (Eilenberg-
Moore) H∞-algebras, and so the retraction H∞A→ A in question can be alter-
natively obtained as the H∞-algebra structure on A. Conditions of Definition 1
are easily seen to be satisfied, e.g. (3) is due to the fact that any H∞-algebra
structure is always an H∞-algebra morphism, and those isomorphically corre-
spond to complete Elgot algebra morphisms.
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5. Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying
guarded and unguarded iteration. In FOSSACS 2017, 2017.

6. Stefan Milius. Completely iterative algebras and completely iterative monads. In-
form. and Comput., 196:1–41, 2005.



A Proofs

Full definition of complete Elgot algebras

For convenience of the reader, we recall the remaining parts of the definition of
complete Elgot algebras, to be found in [2]. For two morhpisms e : X → Y +HX
and f : Y → A+HY , we form a morphism f � e : Y +X → A+H(Y +X) as
f �e = (id+[H inl, H inr]) · (f + id) · [inl, e]. The two omitted axioms are as follows:

– Functoriality: Let e = X → A+HX and f = Y → A+HY be morphisms,
and h : X → Y be a coalgebra homomorphism, that is, (id+Hh) · e = f · h.
Then, e† = f† · h.

– Compositionality: Let e : X → Y + HX and f : Y → A + HY . Then,
(f† • e)† = (f � e)† · inr.

Proof of Theorem 2

We proceed with a number of facts:
(A) For all e it is the case that ρ · e† = ρ · ((σ · ρ) • e)†:

ρ • e = (ρ · σ · ρ) • e = ρ • ((σ · ρ) • e) (section-retraction, props. of •)
=⇒ ρ · e† = ρ · ((σ · ρ) • e)† (congruence)

(B) (-)
‡

gives a solution:

e‡ = ρ · (σ • e)† (def. of (-)
‡
)

= ρ · [id, a] · (id +H(σ • e)†) · (σ • e) (solution)

= [ρ, ρ · a] · (id +H(σ • e)†) · (σ • e) (coproduct)

= [ρ, b ·Hρ] · (id +H(σ • e)†) · (σ • e) (ρ is a homomorphism)

= [id, b ·Hρ] · (ρ+H(σ • e)†) · (σ + id) · e (coproduct, def. of •)
= [id, b ·Hρ] · (id +H(σ • e)†) · ((ρ · σ) + id) · e (coproduct)

= [id, b ·Hρ] · (id +H(σ • e)†) · e (section-retraction)

= [id, b] · (id +H(ρ · (σ • e)†)) · e (coproduct, functor)

= [id, b] · (id +He‡) · e (def. of (-)
‡
)

(C) (-)
‡

is functorial: Let e : X → B+HX, f : Y → B+HY , and h : X → Y
be a (B+H(-))-coalgebra homomorphism 〈X, e〉 → 〈Y, f〉. First, we notice that
h is also a homomorphism between (A+H(-))-coalgebras 〈X,σ•e〉 and 〈Y, σ•f〉:

(σ • f) · h = (σ + id) · f · h (def. of •)
= (σ + id) · (id +Hh) · e (h homomorphism)

= (id +Hh) · (σ + id) · e (coproduct)

= (id +Hh) · (σ • e) (def. of •)



To show functoriality of (-)
‡
:

e‡ = ρ · (σ • e)† (def. of (-)
‡
)

= ρ · (σ • f)† · h (functoriality of (-)
†
)

= f‡ · h (def. of (-)
‡
)

(D) (-)
‡

is compositional: Let e : X → Y +HX and f : Y → B+HY . Then:

(f‡ • e)‡ = ρ · (σ • (ρ · (σ • f)†) • e)† (def. of (-)
‡
)

= ρ · ((σ · ρ) • (σ • f)† • e)† (props. of •)
= ρ · ((σ • f)† • e)† (A)

= ρ · ((σ • f) � e)† · inr (compositionality of (-)
†
)

= ρ · (σ • (f � e))† · inr (props. of • and �)

= (f � e)‡ · inr (def. of (-)
‡
)

(E) ρ preserves solutions:

(ρ • e)‡ = ρ · (σ • (ρ • e))† (def. of (-)
‡
)

= ρ · ((σ · ρ) • e)† (properties of •)
= ρ · e† (A)

Proof of Theorem 4

Let ηA : A → H∞A denote the canonical injection associated with the free
object. Let ρ : H∞A → A be the unique homomorphism of Elgot algebras
(that is, a solution-preserving morphism) such that id = ρ · ηA obtained from
the freeness of FA. Since solution-preserving morphisms are homomorphisms of
H-algebras, to see that ρ is an iteration-congruent retraction, it is left to check
that it is indeed a congruence. For this, assume ρ• e = ρ•f for some morphisms
e, f : X → H∞A+HX. Then:

ρ · e† = (ρ • e)‡ (ρ preserves solutions)

= (ρ • f)‡ (assumption)

= ρ · f† (ρ preserves solutions)

We also need to check that the (-)
‡

operator is indeed equal to the one
obtained by the construction from Theorem 2:

e‡ = ((ρ · ηA) • e)‡ (section-retraction)

= (ρ • (ηA • e))‡ (props. of •)
= ρ · (ηA • e)† (ρ preserves solutions)
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